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lïïTRODUCIION 

Simply stated, pattern recognition is the process of partitioning 

events into a set of mutually exclusive classes. !Ehis partitioning may 

he divided into two separate functions; l) a "transducer" which senses 

the patterns to be identified and converts the information acquired into 

numerical measurements to "represent" the pattern, and 2) a "categorizer" 

which accepts these signals and by some means interprets them as belonging 

to a particular class. 

Interest is generated in this topic by the wide variety of uses for 

which a pattern recognition system might be employed. A common example 

is the need for reading machines to interpret numbers, letters, and sym­

bols for accounting and data processing applications. Banks and post 

offices could also make valuable use of machines which reliably read cur­

sive handwriting. More complex recognition tasks include the analysis of 

air or satellite photos for weather forecasts, speech recognition, identi­

fication of objects on air photos for military purposes, and interpretation 

of sampled electrical signals such as electrocardiograms. 

[The learning matrix is a matrix-like circuit structure which could 

be used as a categorizer in a pattern recognition system. It is a vari­

able-parameter device in which the intersection points of the matrix rows 

and columns are formed by adjustable connecting elements called weights. 

It is also adaptive since the connections which determine its behavior are 

adjusted during its performance (in real time) to improve or optimize the 

overall performance of the system. The device is also said to "learn" in 

the following sense : 
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1) An experiment, organized into a sequence of identical trials, is 

performed. 

2) Each trial produces some quantifiable output by the device. 

3) A relationship "better than" is defined for the outputs. 

The learning matrix is said "to learn" since an examination of its outputs 

over a sequence of trials indicates a trend of improved performance. 

A schematic diagram of a learning matrix is shown in Figure 1. For a 

pattern recognition system the input X is considered to be the output of 

the transducer portion of the system. The output of the learning network 

is compared to a desired output Z* and some performance measure determined. 

On the basis of this measure the adjusting system adapts the learning net­

work. 

Not all pattern recognition systems have a learning capability. The 

significance of learning, or as it is sometimes called, self-organization, 

has been debated at great length. The question is whether or not an adap­

tive network possesses any inherent advantage over a fixed-parameter net­

work suitably designed for some recognition task. It is clear that for a 

specific pattern recognition function the learning ability of any network 

becomes useless once the network has learned the proper responses. A ma­

chine which learns to read the English alphabet and thereafter is required 

to perform no other task, for example, might well be replaced by a simpler 

fixed-parameter network. However, if the network is ever required to per­

form additional tasks, such as reading another language, the learning abil­

ity becomes justified. Thus the importance of network learning depends 

largely upon the requirements and economics of specific practical applica­

tions . 
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Figure 1. Schematic diagram of an adaptive pattern categorizer 
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This dissertation provides a primarily theoretical analysis of an 

adaptive matrix-like circuit structure. This device has direct applica­

tion to pattern recognition problems. As a further introduction to pattern 

recognition, a description and classification of various recognition tech­

niques is given in Chapter II. The types of pattern categorizers are 

divided into three groups depending upon whether the primary principle 

involved is correlation, linear decision functions, or statistical deci­

sion theory. In Chapter III, the details of the learning matrix are de­

scribed. Two algorithms for training the learning matrix are discussed 

and theorems related to the convergence of these procedures are proved. 

A geometrical description of the classification criteria is also provided. 

Physical elements for possible mechanizations of the learning matrix are 

discussed in Chapter IV. The most successful of these elements are based 

on magnetic phenomenon. Chapter V describes the results of a computer 

simulation study of the learning matrix. Experiments were performed on a 

set of handwritten and machine printed numbers. Chapter VI includes a 

summary of the main results of this dissertation and the resulting con­

clusions which can be drawn. Also mentioned are possible areas of future 

investigation based on the principle of the learning matrix. 

This dissertation considers only the categorization problem of pattern 

recognition. The other aspect of the problem - that of designing a suit­

able transducer to extract the essential "features" of a pattern - is in 

many ways more important to successful pattern classification. For this 

study, a suitable set of measurements representing a pattern is always 

assumed to be available. Ideally the features or measurements which de­

scribe a pattern should be invariant to position, size, contrast, and 
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distortion. Any categorizer is never any better than the data with which 

it is presented from the transducer. 

No attention will be given in this study to analogies between the 

learning matrix and biological neurons or systems. Although several ex­

pressions have been borrowed from psychology to describe certain processes, 

such as learning, forgetting, punishing, and rewarding, attempts at analogy 

often lead to over-simplification and misunderstanding. Enough factual 

knowledge of the behavior of nets of natural neurons has not been accumu­

lated to justify a meaningful or useful analogy at this time. 

I 

i 



www.manaraa.com

6 

REVIEW OF PATTERN RECOGNITION TECHNIQUES 

Introduction 

As mentioned in the introduction, the problem of pattern recognition 

can be divided into two basic functions. First, numerical measurements 

must be selected which somehow "represent" each pattern, and secondly, a 

categorizer must be designed which assigns each pattern to the correct 

class on the basis of these measurements. 

The transducer has as its input a physical sample to be recognized 

and as its output a set of numerical measurements which characterize the 

input pattern. The output of the transducer constitutes the input to the 

categorizer which then assigns this input to one of a finite number of 

categories. The measurements which a transducer makes may be either con­

tinuous or discrete. The categorizer applies some type of decision cri­

terion to its input to decide to which category, if any, the input be­

longs. If the decision is suspected of being questionable or unreliable 

in some sense, the categorizer may reject the pattern as belonging to 

none of the categories. The input has then been rejected. If the catego­

rizer attempts a decision and is wrong, it is said an error has been made. 

Since mathematical methods cannot deal with electrical signals, 

physical objects, or optical images directly, a mathematical model of the 

pattern recognition problem must be constructed. A convenient technique 

is to let the signals, images, or events to be recognized be represented 

by points or vectors in an n-dimensional space. Each dimension expresses 

a property of the event. For instance a pattern could be represented as 

a vector by superimposing a set of grid squares over the pattern. Each 

square represents one dimension of the vector. The presence or absence 
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of a portion of the pattern in each square of the matrix could be represent­

ed by a binary one or zero. The entire pattern would be represented by a 

vector, X = (x̂ , x̂ , x̂ ), the coordinates of which designate the 

presence or absence of the pattern in each square. In general the coor­

dinates could have analog values, corresponding to the "amount" of each 

property present. 

The functions of the transducer and the categorizer can be thought 

of in terms of transformations in the n-dimensional space. The trans­

ducer transforms each pattern into a discrete point in r". The catego­

rizer then partitions into disjoint sets of points. A, B, ..., K. 

Figure 2 shows the relative function of the transducer and categorizer 

portions of a pattern recognition system. 

A pattern recognition system depends upon the successful performance 

of both the transducer and the categorizer. The transducer must extract 

a set of features from the pattern which are reliable but not overly re­

dundant. It would be expected that the transducer would tend to cluster 

vectors from a specific class close together in R̂ , in the sense that 

average distances between vectors from the same class would be small. A 

simple set of features was described earlier; that of using a binary 

matrix to represent a pattern. • More sophisticated methods used in char­

acter recognition (reading of alphanumeric data) use features which con­

sist of shape criteria such as straight lines, slanted lines, cusps open­

ing in various direction, circles, and line intersections. Ideal features 

would be invariant to all types of "noise" such as size, skew, and deforma­

tion differences. One of the major problems of pattern recognition sys­

tems is the selection of adequate feature generating transducers. 
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The categorizer is expected to separate the vectors generated by the 

transducer into disjoint sets. A great many techniques have been devised 

which perform this function and some of the main types are discussed later 

in this chapter. 

There are two basic types of categorizers. In one type, called a 

fixed-parameter system, the classification technique is determined from a 

given set of input samples and. does not change after the original design. 

Most of the present systems available for character recognition are of 

this type. In the second type, called adaptive systems or learning net­

works , the system parameters are sequentially changed as the repeated 

occurrence of input and desired output data are presented. Such systems 

go through a learning cycle, called a training procedure, at the termina­

tion of which the device is ready to perform the desired pattern recogni­

tion, This differs from the fixed-parameter system in that the adaptive 

network may be trained to perform a new recognition task by simply under­

going a new training cycle. 

For the purpose of the following discussion, the existing litera­

ture on pattern classifiers may be divided into three sections: correla­

tion or "mask" techniques, hyperplane or linear decision function tech­

niques, and statistical decision models. Although various other related 

ideas have been advanced, in most cases existing ideas may be placed in 

these categories. 

The areas also tend to overlap so that occasionally a technique 

possessing properties of one class can be shown to be equivalent to that 

of another class. For instance the learning matrix of major concern in 

this study could be considered either a correlation method or a hyper-
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plane method depending upon the training procedure and the point of view. 

Correlation Coefficients 

One of the simplest decision making methods is to correlate the input 

vector to be classified with each of several stored references that repre­

sent the different classes to which the input may belong. Most existing 

character readers operate in this way. The stored references or class 

vectors, W, are often the means of the set of sample vectors of each input 

class. Decisions are made by comparing the correlation between the input 

and each of the stored references and by deciding that the input is a 

member of the class corresponding to the largest correlation coefficient. 

In terms of the vector space e", this amounts to finding the maximum 

X • where i is taken over all the possible stored references. The 

shortcomings of this method are illustrated by considering the two classes 

shown in two dimensional space in Figure 3a. Since correlation computes 

a dot product, it is a measurement of the cosine of the angle between the 

reference and the input X. If a is the angle between and X and P the 

angle between and X, the boundary between the region where X is classed 

in A and where it is classed in B is a straight line which passes through 

the origin and causes cos a = Wg| cos p. No matter how is de­

termined from the members of B it is easy to envision situations where 

perfect classification by this method would be impossible. In more than 

two dimensions the separating regions would be hyperplanes rather than 

straight lines. Points that would be misclassified are shown in Figure 3̂  

ĥe dot refers to the dot product between vectors, 
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by the shaded regions. 

Wg by some 

method of normalization, the decision region boundary becomes the bi-

If the correlation scheme is designed so that I 

sector of the angle between and Ŵ . Then the classification is based 

only on the angular proximity of the input to the stored weighting vectors. 

It is a useful method if the angular dispersion between members of each 

class is small compared to the separation between classes. 

Ajiother technique essentially the same as correlation is a decision 

rule based on the minimum Euclidian distance between the input X and the 

stored references Ŵ . An input is classified in A, that is XgA, if 

I X - < |X - Wg| . This rule partitions the space into two regions 

by the perpendicular bisector of the line connecting and Ŵ . If|¥̂ j= 

|¥g|, minimizing the Euclidian distance is equivalent to maximizing the 

correlation coefficient. 

The correlation coefficient technique and Euclidian distance tech­

nique define different decision regions when a threshold or discrimina­

tion level is used to provide rejection of the input when the decision is 

not considered reliable for some reason. ¥ith correlation, an input may 

be rejected if max X • ¥̂  < d for all i, that is, the input is not simi­

lar enough to any of the stored references. The regions of space where 

inputs are classified in each category are shown in Figure 4a as cone-

shaped regions with the stored references bisecting the cones. 

A threshold may also be employed with a Euclidian distance decision 

method by rejection of an input if j X - ¥̂ j > d for all stored refer­

ences. Acceptable regions are then circles in the two dimensional space 

as shown in Figure 4b. 
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Figure 4a. The use of thresholds with correlation 

Rejected inputs 

— I 

Figure 4b. The use of thresholds with minimum Euclidian distances 
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A recognition technique based on correlation is described in High-

leyman (8). 

The stored references of correlation recognition methods may either 

be ̂ recalculated by examining the known members of input sets, or they 

may be "learned" by a process of sequentially observing an input vector 

and its known class and adapting the stored reference. A fixed-parameter 

system would use the first method while a learning network would use the 

second. 

Linear Decision Functions 

There is not a great deal of difference between decision processes 

based on correlation coefficients and the idea of separation of pattern 

classes by linear decision functions or hyperplanes. As pointed out 

previously, the boundaries which separate classes using correlation in 

higher dimensions are hyperplanes which pass through the origin. One 

hyperplane, defined by a normal vector ¥ and a distance from the origin, 

d, can be used to separate two classes. All inputs such that X • W > d 

are placed in one class and if X • ¥ < d the input is placed in the 

other class. The space is thus separated by this decision process into 

two half-spaces. The equation X ' W - d = 0 represents the separating 

hyperplane. Figure 5 shows a plane in three dimensions which is used to 

separate the patterns (vectors), (l 1 O), (l 0 l), and (l 1 l) from all 

other points in space represented by binary inputs. The question of 

whether or not a hyperplane exists which will perform a specified dicotomy 

of the binary input space is a major problem of the area of threshold 

logic and linear separability. A great deal has been published in this. 
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Figure 5. Separation of three-variable space by a hyperplane 
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area and the interested reader is referred to Mattson (ll), Ridgeway (l4), 

and Winder (20), (2l) for further information. 

One form of pattern recognition using hyperplanes then, is to attempt 

to find a hyperplane (¥̂ ,d̂ ) for each pattern class i, such that if XgA, 

X * > d̂ , and if Xji A, X • < d̂ . That is, to find a hyperplane 

which separates each class of inputs from all other inputs. If there are 

k classes, k hyperplanes would be needed. As might be imagined, this 

imposes some severe restrictions on the location of the sets in the space 

in order for perfect classification to be possible. In the terminology 

of convex sets, the requirement for perfect classification can be expressed 

as follows : The convex hull of each pattern class and the convex hull of 

all other pattern clases must not intersect. Figure 6a shows the separa­

tion of three classes in two dimensional space using one hyperplane per 

class. 

The requirements of the preceeding method can be relaxed somewhat if 

a hyperplane is used to separate each pair of classes. The decision mak­

ing process is then reduced to determining on which side of each hyper­

plane a given input lies. This method is employed by Highleyman(9). 

With this method the convex hulls of each pair of classes must be non-

intersecting for a perfect solution to be possible. This is a much less 

stringent condition than the one hyperplane per class method. Figure 6b 

shows the separation of three classes in two dimensions by class pair 

hyperplanes where the one hyperplane per class technique would not per­

fectly separate the classes. 

The disadvantage of class pair separation is that the required num­

ber of hyperplanes increases rapidly. For k classes the number of hyper-
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planes needed is given by 

/ k \  ̂ kl  ̂ k(k - l) 
 ̂2 / 21(k - 2)1 2 

Thus in a character recognition system which recognizes the ten numbers 

zero through nine, a total of 4$ hyperplanes are required for class pair 

separation whereas only 10 are required for class separation. 

It is shown in Highleyman (9) that for any set of data, a pattern 

recognition method based on linear decision functions (or hyperplanes) is 

at least as good as any based on minimizing a Euclidian distance or maximiz­

ing a cross correlation function. 

The idea of a linear weighted sum as a decision process goes back to 

one of the earliest types of learning networks, the perceptron, proposed 

by Rosenblatt (16) in 1958. Only later was the geometrical interpreta­

tion of hyperplanes associated with the technique. What Rosenblatt suc­

ceeded in showing was that a successful set of hyperplanes could always be 

found by a sequential learning process provided such a set did in fact 

exist. The proof of the convergence of the learning process was later 

simplified and amended by others, notably ïïovikoff (l2). The perceptron 

model is shown in Figure 7. It is assumed that sensory inputs are mapped 

by means of random connections with fixed weights upon a series of deci­

sion units called A-units. Ho learning occurs in this stage and it may 

be considered that the output of the A-units represent a transformed in­

put pattern. The transformed inputs are then mapped through variable 

T̂he exclamation point denotes factorial or, kL = k(k - l)(k - 2)... 
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weights to response or R-units (only one shorn). The R-unit acts as a 

threshold element, making a binary decision one if the sum of its inputs 

is greater than the threshold and zero otherwise. During the learning 

process the values of the weights ŵ  are changed whenever the output of 

the R-unit disagrees with the desired output of the network which must be 

known during the learning cycle. This process is called reinforced learn­

ing. 

Thus an advantage of the linear decision function technique is that 

the designer is assured a learning process will converge to an acceptable 

set of hyperplanes if such a set exists. 

1 Statistical Decision Theory 

The basic function of the categorizers is to make a decision. At­

tempts to optimize this process have led to pattern recognition techniques 

based on statistical decision theory. The recognition problem is con­

sidered to be a problem of testing multiple hypothesis that a given input 

is or is not a member of a given class. The necessary information in all 

statistical decision processes is;' (see Harmon (5) ) 

1) The a priori probability of each of the pattern classes or P(ĉ ), 

2) The conditional probability that, given a class c., X. is a member 
J  ̂

of class c., or P(X. c.), and 
J 11 

3) The cost associated with making the decision X. e c., or C... 

Thus C.. is the cost associated with making the decision X. e c. when in 
1 J 

fact X was a member of some other class. 

This optimum decision process based on the a priori information is 

called a Bayes' decision rule and is designed so as to make the decision 
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that minimizes the average cost. In character recognition systems the 

costs associated with various types of errors are often considered equal. 

For example there is no greater penalty incurred for calling a five a 

seven than for calling a five a six; both cases are errors. The Bayes' 

decision is made by finding through Bayes' Theorem on probability, the con­

ditional probabilities P(c. j X} given by 

0 

For the case of two pattern classes, ĉ  and ĉ , the Bayes' decision rule 

minimizes the average cost by choosing X e ĉ  if 

PCX I CgJ  ̂

Thus the decision rule that minimizes risk compares the ratio of two prob­

ability densities with a precalculated threshold value T to decide if X is 

more likely a member of ĉ  or ĉ . The ratio of conditional probability 

densities is called the likelihood ratio and the class of decision rule, 

Bayes' rules. In the simple case where the costs and a priori probabil­

ities are equal (T = l), a not uncommon situation in pattern recognition, 

the optimum decision consists of determining the maximum conditional prob­

ability P(Cj| X) from Equation 1 above. Actually the denominator of the 

right side of Equation 1 can be removed since it appears for each ĉ  and 

does not affect the relative maximum. Figure 8 shows a schematic diagram 

of an optimum decision network. 
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A simplification occurs for the statistical decision method if each 

of the features is assumed to he independent and also binary valued. 

The conditional probability P(X jĉ ) is then simply the product of the n 

individual feature probabilities, or 

P(X I Cj) = I ĉ , ) = 1 (̂'"2 I C])--' |Cj) 

Returning to the two class example with equal costs, Bayes' rule becomes, 

choose X e ĉ  if 

P(X I ĉ ) P(ĉ ) 

P(X I Cg) Pfcg) 
> 1 

or 

cj pCx Î cj ... P(x̂ | ĉ )] P(ĉ ) 

[P(x̂ | Cg) pCx̂ I Cg) ... P(x̂  I Cg)] Pfcg) 
> 1. 

Taking the logrithm of both sides gives. 

log 

IT I "i) 
L i=l 

> 0. 
n 

TT I =2) 
i=l 

or 

J 
i=l 

log I 
p(%iI  =2)  " PCT ̂  °-

(2) 
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Now since is assumed to be binary, i.e., zero or one, each of the 

terms, log (p(x̂ | ĉ }/p(x̂  | ĉ ) ) in Equation 2, can assume only two 

values. By letting 

Ho I C^} P(1 I ĉ ) P(0 I c ) P(c ) 

"i " P(0 I Cgj ' ""i " P(0 I ĉ j PCl I Cgj ' K = log 

Equation 2 can be written in the form 

n 

V .  X .  +  u .  +  K  > 0 .  
11 1 

i=l 

Equation 3 is the condition for choosing an input X to be a member of class 

ĉ . The significance of the equation is that the Bayes' decision rule in 

these special circumstances is identical to a weighted sum method of pat­

tern recognition as used in a simple threshold element. 

An important facet of the Bayes' decision procedure is that the nu­

merical values associated with costs and prior probabilities do not in­

fluence the nature of the computations performed on the input. They mere­

ly affect the threshold of comparison, T. It might also be noted that 

besides problems in pattern recognition, many other decision problems are 

formulated in terms of statistical decision theory. For instance a two 

class problem might consist of signal present or no signal present and the 

problem becomes the optimum detection of signals in noise. 

There are two factors which severely limit the usefulness of a sta­

tistical decision method for pattern recognition. Although such a method 

is theoretically optimum, these two conditions usually force the employ­

ment of non-optimum methods. 

(3) 
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The first condition is the assumption that the conditional joint 

probability densities, P(X | ĉ ), are known. In some cases this may 

indeed be the case, particularly if the physical process that generates 

the classes of signals are known. More often than not, however, no knowl­

edge of conditional probabilities is known. In principle, the proba­

bility densities can be obtained by observing the relative frequencies 

with which each of the possible combinations of features of the inputs 

occurs as the number of samples of the class on which the observations 

are made approaches infinity. Unfortunately most pattern recognition 

problems do not operate in this fashion. Most often the designer has 

to be satisfied with a finite and fairly small number of samples from 

which to estimate the unknown densities. 

A second factor that limits the usefulness of statistical decision 

theory is the constraints imposed on the realization of the decision 

rule. If the probability densities are not analytically expressible 

even if they are known, their values at each point must be stored and 

tabulated. The resulting storage requirements prohibit the realization 

of likelihood ratios in all but the simplest cases. One way around 

this difficulty is to assume a common form for the probability distribu­

tion, usually the gaussian distribution. A significant reduction in 

storage capacity is also obtained by assuming the features or dimensions 

of each vector are statistically independent. Here only the values 

P(̂ i I ) have to be tabulated instead of all of the P(X jĉ ). 

Further reviews of pattern recognition methods with extensive bibli­

ographies are given in Hawkins (7), and Sebestyen (l?). Not mentioned 
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here is the separation of pattern classes by higher order surfaces 

described in Greenberg and Konheim (4) .  
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LEARNING MATRIX 

Introduction 

The learning matrix is an adaptive network which can serve as a cat-

egorizer for a pattern recognition system. The development considered in 

this study is suggested by a model presented by Pohm, Allen, and Wilsson, 

(13)5 called a linear adaptive decision network. A description of an 

adaptive array called a learning matrix is given in Steinbuch (18). 

The matrix accepts as its input a set of analog or binary measure­

ments, X = (x^, Xg, . . x^), which represent some type of pattern. 

The output columns of the matrix designate the pattern class code c^ to 

which X belongs. If there are k pattern classes the matrix has k output 

lines; hence the class statements are given in a one out of k code. If 

the n-dimensional input vectors are to be classified into k classes, the 

learning matrix is an n x k array. 

Figure 9 shows a learning matrix with a three-dimensional input and 

three output lines. The connections between input and output lines are 

variable elements called.weights and they represent the adaptive feature 

of the network. One way to describe these connections is to consider that 

signals are transmitted from input to output by transformer action. Each 

connection is an independent, variable, coefficient of coupling between 

transformers. Thus the strength of a given connection may vary continu­

ously between -1 1. 

To perform a pattern recognition function the operation of the matrix 

proceeds in two phases, a training phase and a recognition phase. During 

the training phase the matrix receives an input X together with the pat­

tern class code c. to which X belongs. The connections to the output 
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I 

X. 

Output lines 

=1 =2 =3 

0 0 
Input 

lines 

Figure 9. A learning matrix to categorize three dimensional 
input vectors into three output classes 
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column for this class are then strengthened or "reinforced" and all other 

connections to output columns weakened or "punished". After several pre­

sentations or iterations of a set of input vectors called an organizing 

set or training set, the matrix is ready for operation in the recognition 

mode. New patterns are presented and classified by the matrix on the 

basis of what it has "learned", i.e., the information it has stored in the 

variable connections during the training cycle. If these new patterns are 

not classified correctly, an improvement may be sought by repeating the 

training phase. 

Of the pattern recognition systems described in Chapter II, the learn­

ing matrix resembles most clearly the correlation coefficient type. This 

is because each pattern class is associated with one column of the matrix 

or one "weighting vector". It can be shown however, that with a particular 

training routine and method of detecting the class code c^, the learning 

matrix becomes analogous to separation of classes in the n-dimensional 
I 

space by hyperplanes or linear decision functions. These similarities 

are discussed in detail later in this chapter. 

The Continuous Correction Algorithm 

The first training procedure or algorithm for adapting the learning 

matrix classifies patterns by attempting to produce an output of one on 

the output line associated with the class of each input pattern and a 

zero on all other output lines of the matrix. An example problem for the 

learning matrix of Figure 9 might be to classify the three patterns = 

(l 0 O), Xg = (l 1 O), X̂  = (oil), by producing outputs of = (l 0 O), 

Zg = (O 1 O), Z^ = (O 0 l). The first training algorithm is called the 
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"continuous correction" algorithm since an adaption is made to the learn­

ing matrix after every input. It follows the method proposed by Pohm, 

Allen, and Nilsson (13), and operates as follows: 

1) The initial values of all coefficients' of coupling are arbitrary 

but are assumed to be zero. 

2) Each pattern (vector) is applied sequentially to the input of the 

matrix. The connections to the output column corresponding to the class 

of the input are adjusted until the column output is unity. The connec­

tions to all other columns are adjusted so the column outputs are zero. 

Thus a column vector is sought which is orthogonal to both Xg and 

X but for which X • ¥ = 1. Note that only the connections on input 
5 1 1 

lines with a binary one are adjusted since input lines with a zero input 

contribute nothing to the column output. 

Note also that for this example and all others in which m patterns 

are to be divided into m classes, Z*, the desired output matrix, equals I, 

the identity matrix. In these cases, the ideal weighting matrix can be 

found directly by matrix manipulations. Assuming the input vectors are 

linearly independent so that X is nonsingular it is easily seen that^ 

X W = Z* = I 

¥ = X"̂ . 

Thus a weighting matrix to perfectly classify the three inputs exists and 

is equal to the inverse of the input matrix. 

^ denotes the inverse of the matrix X. 
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It may seen strange to bother with a training algorithm if the de-

sired weighting matrix is already known. However, X exists only if the 

training set is composed of n, linearly-independent, n-dimensional vec­

tors . In many cases there may be more or less than n inputs. Also for a 

large number of dimensions it is difficult to determine X A computer 

could do so, but the ultimate utility of the learning matrix is an actual 

physical network for which the mechanization of finding X ̂  would be dif­

ficult . 

The first step in analyzing properties of the training algorithm is 

to formulate the procedure in an exact mathematical language. This can 
I 

be done efficiently through the use of matrix terminology. 

The input patterns are considered to be n-dimensional vectors or row 

matrices. In general throughout this dissertation capital letters desig­

nate matrices, sets, or vectors and small letters designate scalar quan­

tities. An iteration is defined to be one presentation of an organizing 

set. The following nomenclature is useful in the mathematical manipula­

tions which follow. 

i; the row index. X^ is the i-th member of the organizing set, or 

the i-th row of the input matrix X. 

j; the column index. x_ is the j-th dimension of the i-th input 

vector. 

t; an index representing the number of the iteration. 

n; the number of dimensions of each input vector. 

m; the number of vectors in the organizing set. 

k; the number of output classes. 

cj; the j-th output class. 
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X; the input matrix. It has m rows and n columns. 

the i-th input vector or the i-th row of X. 

W; the weighting or learning matrix. It has n rows and k columns. 

Wj; the j-th column of the weighting matrix; or, the weighting vector 

corresponding to output class c^. 

W(i,t]; the weighting matrix after adaption to the i-th input dur­

ing the t-th iteration. 

the output row matrix given by = X^W. 

Z^*; the desired output row matrix. Z^* has a 1 in one position, the 

position of the class corresponding to the i-th input, and a 0 in 

all other positions. 

the error row matrix after presentation of the i-th input, given 

by E. = Z.* - Z.. 
11 1 

I; the identity matrix. 

The pattern recognition problem is essentially equivalent to carrying 

out the matrix multiplication XW = Z, where X, ¥, and Z are as described 

above. The successful separation of patterns is accomplished if XW = Z*. 

The description of the continuous correction algorithm can now be 

expressed in a mathematical form as follows : 

1) W(0,0) = 0, the zero matrix. 

2) Each input X^ is postmultiplied by the weighting matrix W to give 

a row output Z^. 

3) An error matrix is generated by subtracting the actual output Ẑ  

from the desired output Ẑ *. That is, Ê  ̂ = Ẑ * - Ẑ  = Ẑ * - X̂ ¥. 

4) The weighting matrix is adapted so that if X. e c , X.W =1 and 
1 p 1 P 

X^Wj = 0, for all j ̂  p. 
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5) The next input, then considered. 

It was discovered that h) could be accomplished if ¥ is changed by adding 

AW to W, where 
1 

AW = 
X. 'E. 
X 1 

X. 
X 

X.'(Z.* - x.w) 
X  ̂ X X ' 

X. 
X 

Three training iterations are carried out in Table 1 for the example prob­

lem mentioned previously where 

X — 

10 0 

1 1 0  

o i l  

and Z* = 

10 0 

0 10 

0 0 1 

Table 1. Three training iterations of the learning matrix using the con­
tinuous correction algorithm. W(0,0) = 0. 

Iter- Ma- Input 
ation trix 

t Xg X3 

( 0 0 0) ( 1 0 0) (-1/2 1/2 0) 

( 1 0 0) ( -1 1 0) ( 1/2 -1/2 1) 

1 0 0 -1/2 1/2 0 0 0 0 

0 0 0 -1/2 1/2 0 1/h -1/4 1/2 

0 0 0 0 0 0 1/k -l/k 1/2 

.e prime (') is used to denote the transpose of a matrix. 
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Iter- Ma- Input 
ation trix 

=̂ 1 2̂ 3̂ 

1 0 0 1/2 1/2 0 1/2 1/2 0 

w 0 0 0 -1/2 1/2 0 -1/4 1/4 1/2 

0 0 0 0 0 0 1/4 -1/4 1/2 

z (1/2 1/2 0) ( 3/4 1/4 1/2) (-3/8 3/8 3/4 

E (1/2 -1/2 0) (-3/4 3/4 -1/2) ( 3/8 -3/8 1/4 

1/2 -1/2 0 -3/8 3/8 -1/4 0 0 0 

2 A¥ 0 0 0 -3/8 3/8 -1/4 3/16 -3/16 1/8 

0 0 0 0 0 0 3/16 -3/16 1/8 

1 0 0 5/8 3/8 -1/4 5/8 3/8 -1/4 

W -1/4 1/4 1/2 -5/8 5/8 1/4 -7/16 7/16 3/8 

1/4 -1/4 1/2 1/4 -1/4 1/2 7/16 -7/16 5/8 

Z (5/8 3/8 -1/4) ( 9/16 7/16 3/8) (-9/32 9/32 13/16) 

E (3/8 -3/8 1/4) (-9/16 9/16 -3/8) ( 9/32 -9/32 3/16) 

3/8 -3/8 1/4 -9/32 9/32 -3/16 0 0 0 

3 AW 0 0 0 -9/32 9/32 -3/16 9/64 -9/64 3/32 

0 0 0 0 0 0 9/64 -9/64 3/16 

1 0 0 23/32 9/32 -3/16 23/32 9/32 -3/16 

W -7/16 7/16 3/8 -23/32 23/32 3/16 -37/64 37/64 9/32 

7/l6 -7/16 5/8 7/16 -7/16 5/8 37/64-37/64 23/32 

The question now arises, "Does the training algorithm described, in 

fact cause the learning matrix to converge to X The value of the 
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learning matrix after each of three iterations is shown in Table 1. 

¥(3,3) and X"̂  are also shown below. 

23/32 9/32 -3/16 10 0 

W(3,3) = -37/64 37/64 9/32 x"̂  = - 1 1 0  

37/64 -37/64 23/32 1 - 1 1  

It appears that the learning matrix is converging to the desired matrix 

X~̂ . But the appearance of convergence for any number of examples (and 

many have been worked out) is not of particular value. What is needed for 

this- algorithm is a proof of convergence under general conditions for in­

put vectors and output classes. This problem is solved in the following 

section. 

Theorems and Eroofs 

A mathematical description of the continuous correction algorithm 

has been discussed previously. A general expression for the adaption 

process is given by 

X.' E. 
¥(i,t) = ¥(i - 1, t) + -i-  ̂

1=^1 

W(i,t) = W(i - 1, t) + 
X.'(z.* - X. ¥) 
11 1 

X. 
2 

X. 
1 

(4) 

With these preliminaries, an equation for the weighting matrix after 

t iterations can be derived as a function of the input vectors and the 
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desired outputs. This is stated formally in Theorem 1. 

Theorem 1. An equation for the weighting matrix after t iterations, 

W(t)j can he expressed as a function of the organizing set, X, and 

the desired output matrix, Z*. 

Proof. From Equation 4, W(i,t) is expressed in terms of W(i - 1, t). 

Thus the weighting matrix at any stage of learning is always a function 

of the present input vector and desired output, and the preceeding weight­

ing matrix. The following development is for an organizing set containing 

three vectors, although an identical' procedure would be followed in a 

proof for any number of inputs. 

The weighting matrix after adaption to the third input during the 

t-th iteration is 

w(3,t) . w(a,t) + 
X, 

I- ^3*^3 

X, 

w(2,t )  + 

X, 

(5) 

Similarly, ¥(2,t) and ¥(l,t) can be written as 

¥(2,t) = 
Xg'Xg 

X. ' 

w(l,t) + ^ 
X. 

(6) 



www.manaraa.com

37 

and 

W(l,t) I -
X 
1 

w(3,t - l) + 
X 

(7) 

1 

Combining Equation 5, 6, and 7 to eliminate W(l,t) and W(2,t) gives 

W(3,t)  =  

' ' l^al ' ' I b̂' ' 
X 
1 

X, X. i.r 1 2 
Xo 

2 
x^ Xo 

2 

X̂ 'X̂ X̂ 'X̂ X̂ 'X̂  

X, X. 
w(3,t  -  1) 

\'V 
X„'Z * X 'Z * X^'X^X 'Z * 
2 2 + 3 3 2 2 1 1 

X, 
• 2 

X 
j 

%3'%3%l'=l* 
1 2 

X-, 
2 

x^ X-, 
3 1 

3̂*̂ 3̂ 2* V + 

1 X 
2 
X, 

2 
1 X X, 
1 1 

X 'X X X 1 
3 : 2 2 

X, X, X, X, X. 
• (8) 

From Equation 8, ¥(3,t) can be expressed compactly as 

w(3,t )  =  A W(3,t  -  1)  + B,  (9) 

where A is the entire matrix coefficient of W(3,t - l) in Equation 8. It 

is the sum of eight 3^3 matrices and for the general case of m, n-dimen-
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sional vectors, is a square n by n matrix. The matrix B in Equation 9 is 

the sum of the remaining matrix terms in Equation 8. In general it is an 

n by k matrix where k is the number of output classes. The significance 

of Equation 9 is that both A and B depend only upon the input matrix X and 

the desired output Z* and therefore could be computed immediately in any 

problem. 

In general, for an organizing set of m input vectors, A is given by 

A = I -
X 'X 
m m 

X 
m 

I -
X . /X ,  
m-1 m-1 

X 
m-1 

I. 

X. 

m 

i=l 

I -
X.'X.  
1 1 

X. 2 X. 
1 

(10) 

Note A is the sum of 2̂  matrices and hence becomes very complex for 

large m. 

Now using the recursive relationship given by Equation 9, an equation 

for the learning matrix after any number of iterations can be found as 

stated in Theorem 1. In all cases which follow, the weighting or learn­

ing matrix will be expressed in terms of its value after adaption with 

the last input in the organizing set, in this case, X . Thus W(3,t) will 

be written simply as W(t). From Equation 9, with W(o) = 0, 
1 

V = A "A" • • A, and A° = I 
V -, v' 

k times 
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W(l) = A ¥(o) + B = B 

W(2) = A ¥(l) + B = (A + l) B 

W(3) = A ¥(2) + B = (Â  + A + I) B. 

In general, 

¥(t) = (Â "̂  + Â -̂  + . . . + A + l) B = 

Equation 11 is thus a proof of Theorem 1. 

To check the validity of this relationship the example problem worked 

out in Table 1 is repeated using Equation 11. To simplify writing the 

equation for A let 

X.'X.  
1 1 

X. 
2 

X. 
1 

The expression for'A-with three inputs then becomes 

A = I - - Qg - + *^2*^1 '^3*^1 ^ *^3*^2 ~ *^3*^2*^1 

1 0  0  1 0  0  1/2 1/2 0 0 0 0 

0 10 - 0 0 0 - 1/2 1/2 0 - 0 1/2 1/2 

0 0 1 0 0 0 0 0 0 0 1/2 1/2 

1/2 0 0 0 0 0 0 0 0 0 0 0 

+ 1/2 0 0 + 0 0 0 + i/k 1/4 0 - 1/4 0 0 

0 ' 0 0 0 0 0 1/4 1/1+ 0 1/4 0 0 

t-1 
S 
k=0 

A B. (11) 
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A = 

0 -1/2 0 

0 1/4 -1/2 

0 -1/4 1/2 

To simplify writing B let 

X. 'Z.* 
X 1 

2 
X. 
1 

fi = 

Then the expression for B with three output classes and three inputs is 

B = + Pj + P3 - % - Q3P1 - Q3P2 + 

1 0 0 0 1/2 0 0 0 0 1/2 0 0 

0 0 0 + 0 1/2 0 + 0 0 1/2 - 1/2 0 0 

0 0 0 0 0 0 0 0 1/2 0 0 0 

0 0 0 0 0 0 0 0 0 1/2 1/2 0 

0 0 0 - 0 1/4 0 + 1/4 0 0 = -1/4 1/4 1/2 

0 0 0 0 1/4 0 1/4 0 0 1/4 -1/4 1/2 

Now using A and B, W(t) can be computed. 

W(l) = B 

The computation of W(3,l) in Table 1 checks with B as calculated above. 

W(2) = (A + I) B 
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1 -1/2 0 1/2 1/2 0 

0 5/4 -1/2 -1/4 1/4 1/2 

0
 

1 3/2 1/4 -1/4 1/2 

5/8 3/8 -1/4 

-7/16 7/16 3/8 

7/16 -7/16 5/8 

This result checks W(3,2) as computed in Table 1. 

There is as yet no proof that the matrix series given by Equation 11 

converges as t approaches infinity. The problem is to find 

"final' 
w(t) = E 

t=0 
A' B. (12) 

To prove that Equation 12 above converges, it is necessary to prove 
°° t 

that the infinite matrix series, S A converges. A theorem from Varga 
t=0 

(19) provides necessary and sufficient conditions that a matrix power 

series converge. 

Theorem 2. (Varga) If A is a complex n by n matrix, then A is con­

vergent if and only if p(A) < 1, where p(A) is the maximum eigenvalue 

of A. 

Proof. Only the general idea of the proof is given here. It consists of 

reducing A to its Jordan normal form by finding a matrix S such that 

SAS ^ = J where J is the Jordan normal form of A. Then J has eigenvalues 

"t 
on the diagonal and ones or zeros on the superdiagonal. Taking J 
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t 
raises X so that for the matrix series to converge the maximum A. must 

be less than one. A rigorour proof of this is given in Varga (19). 

Thus in order for Equation 12 to converge it must he shown that the 

maximum eigenvalue of A is less than one in absolute value. The proof 

of this is one of the more important aspects of this thesis. The follow­

ing lemma is useful in proving this result. 

Lemma 1. For any n-dimensional vectors Y and X, 

Proof. Let ê , ê , . . ., X be an orthonormal basis for the n-dimensional 

space. Then any vector Y can be expressed as 

and 

Hence 

I Y(I - X'X) I = ( + CgX)(l _ X'X) 
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ÎThus, 

I Y(I - X'X)| < + . . . + = I Y| 

and the lemma is proved. The equality holds only if = 0, i.e. Y is 

perpendicular to X. 

Theorem 3- Consider an organizing set composed of n, linearly inde­

pendent, normalized,̂  n-dimensional vectors. Then all eigenvalues 

of the matrix A are less than 1 in absolute value, where A=(l-X 'X ) 
'  ̂ n n' 

Proof. Let ê , ê , . . ., X̂  be an orthonormal basis for the n-dimensional 

space. Let Y be any non-zero n-dimensional vector. Then, applying Lemma 

1, I Y(I - < 1̂ 1 * choose a new basis for the space, one 

vector of which is X .̂ The vector Y(I - X 'X ) can be expressed in 
n-1  ̂ n n' 

terms of this new basis. Again applying Lemma 1, 

I ï(X - I < |Y(I - I < |4 

Repeated application of Lemma 1 then gives, 

|ï(i - X̂ 'X̂ ) ... (I - X̂ 'X̂ )I = |YA| < |Y| . 

In particular, if Y is any eigenvector of A, 

Yàl = IXYI = IXIIYI < IYI . 

ô loss of generality is involved in assuming the input vectors to 
be normalized since Equation 10 shows the vectors to be normalized anyway 
by the iterative procedure. The only reason for assuming them normalized 
here is to reduce the complexity of the mathematical expressions. 
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Hence, 

|à| < 1. 

To prove Theorem 3, it must be shown that the equality X = 1 can­

not hold. For the equality to hold, 

|YA| = |Y(I - X̂ 'Xj ... (I - X̂ 'X̂ ) I = I X Y . 

The transformation A may be thought of as a series of transformations 

(l - X.'X.). It is shown in Lemma 1 that the effect of each of these 

transformations on any vector is to either reduce the magnitude of the 

vector or to leave the magnitude unchanged, for the equality to hold 

for the entire transformation A, it must hold for each step of the trans­

formation, for if the magnitude of the original vector is reduced it 

can never be increased. Thus for the equality to hold for any non-zero 

vector, Y, the following equations must hold. 

|ïCl-X^'Xj| = |ï| 

I = I I 

I 1(1 - \'\} ... (I - ° I . . .(I - Xg'Xg) I 

The first of these equations implies that Y is perpendicular to X̂  so 

that Y(I - X̂ 'X̂ ) = Y. Using this result, the second equation becomes, 
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which implies that Ï is also perpendicular to X . Proceeding in this 
n-1 

fashion for each of the equations shows finally. 

|Y(I-X̂ 'X̂ )| = |Y1 

so that Y is also perpendicular to X̂ . Thus Y is perpendicular to X̂ , 

Xgj . . X̂ , a contradiction since an n-dimensional vector Y cannot 

be simultaneously orthogonal to n independent vectors. Thus the assump­

tion that the equality |YA| = j Y j holds was incorrect and therefore 

jxj < 1, completing the proof. 
°° t 

It has thus been shown that S A converges. A necessary condi-
t=0  ̂

tion for this convergence is that lim A = 0, the null matrix. Us-
t— 

ing this result it can easily be shown that the initial value of the 

weighting matrix does not affect the overall convergence of the itera­

tive process. Since 

, t 
W = lim Â  W(0) + C Z AT ) B , 

t — k = 0  

the term of W containing ¥(o) approaches zero as t approaches infinity. 
CO 

Now that it has been established in Theorem 3 that E Â  con-
t=0 

verges, the next question is, "What does it converge to?" This is stated 
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formally as Theorem 4. 

t 
Theorem 4. The infinite matrix series Z A converges to 

, t=0 
(I - A)-l. 

Proof. The fact that the series does converge is established in Theorems 

2 and 3. Therefore let 

CO 

S = s Â . 
t=0 

Then 

S - AS = (l - A - Â  - . . .) - (A - Â  - Â  _ . . .) 

= I 

8(1 - A) = I 

,t 

S = (I - A)"̂ , 

thus proving the theorem. 
CO 

A necessary condition for convergence of E A" can also be estab-
' t=0 

lished. 

Theorem 5. The infinite matrix power series 

S Â  = I + A + Â  + Â  + . . . 
k=0 

will converge only if (l - A) ̂  exists. 

Proof. Assume the series converges to some matrix, S, but that (l - A) ̂ 

does not exist. From Theorem 4, 
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S (I - A) = I. 

Since (l - A) ̂ does not exist, the determinant of (l - A) = 0. But 

Det [8(1 - A)] = [Det S] [Det (l - A)]  = Det I. 

Since Det 1=1 and [Det 8] [Det (l - A)] = 0, a contradiction arises. 

The original assumption was therefore incorrect and the necessity of the 

existance of (l - A) ̂  for the convergence of S is proved. 

It can now be shown that the matrix A meets the necessary condition 

for convergence of Theorem 5. 

Lemma 2. Given an input matrix X of m, n-dimensional vectors, the 

rows of the matrix (l - A) are linear combinations of the vectors X̂ , 

where I is the identity matrix and A is the matrix defined by Equa­

tion 10. 

Proof. As the most simple example, consider the case where X is 2 by n, 

i.e., there are only two n-dimensional input vectors to be classified. 

Then 

I - A = + Qg -

An expression for each row of (l - A) can now be found. represents 

the i-th row of (l - A), i = 1,2,3,. . . n. 
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X 
2̂ = 12 

X. 

(Xl'̂ 2̂  ̂ 22 
1 2 2 

X. 
1 2 1 

X, 
22 

X. 
X. 

R = 
n 

In 

X, 

(X̂ '̂Xg) X 2n 

X. X 
1 

Xi + 
X, 
2n X. 

X. 

Thus 

El = Xg 

\ ̂2 

where a and b are the coefficients of X̂  and X̂  respectively. 

In the general case of m input vectors for which X is an m by n ma­

trix, 

+ bjXg + . . . + q̂ X. 
m 

®n " Vl + *3X2 + ' • • "" V ' m 
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Ihe n rows of the matrix (l - A) are thus linear combinations of the m 

rows of X and Lemma 2 is proved. 

Theorem 6. Given an input matrix X of m, n-dimensional vectors, the 

matrix (l - A) ̂ exists only if the m vectors span the n-dimensional 

space. 

Proof. The proof is based on the fact that the inverse of (l - A) will 

exist if and only if the determinant of (l - A) is non-zero. For the 

determinant to be non-zero the rows of (l - A) must be independent. From 

Lemma 1 it is seen that the n rows of (l - A) are linear combinations of • 

the m input vectors. Thus only if n of the m input vectors are independent 

can the rows of (l - A) be independent. If the m vectors span the n-dimen­

sional space, then n of them must be independent. Thus if the input vec­

tors span the space, the rows of (l - A) are independent and (l - A) ̂ 

exists. If the m vectors do not span the n-dimensional space, at least 

one of the n rows of (l - A) is dependent upon the others, and (l - A) ̂  

does not exist. 

Corollary 1. If the number of input vectors, m, is less than the 

number of dimensions, n, the matrix (l - A) ̂  does not exist. 

Proof. The proof is a direct result of Theorem 6, If m is less than n 

the vectors cannot span the input space and thus (l - A) ̂ does not exist. 

Thus, an input matrix X composed of m, n-dimensional vectors meets 

the necessary condition for the convergence of A only if m > n. 

Theorem ?• Using the continuous correction algorithm described pre­

viously, the learning matrix W, will converge to the desired optimum 

value, X~̂ , provided the organizing set X is a complete set of 
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linearly independent vectors. 

Proof. From Equation 12, a general expression for the final value of the 

learning matrix is 

"f = Wfinal S A' 
t=l 

B 

where A and B are matrices defined in Equations 8 and 9» From Theorems 

3 and 4 the final W is shown to be. 

Wf = (I - A)"^ B. (13) 

What remains to be proved is that is actually X Performing ele­

mentary operations on Equation 13 gives 

I = A + B W -1 
f 

(Ik) 

Once again the complete proof is continued only for a specific example, 

in this case when X is a 2 by 2 matrix, i.e., two input vectors of two 

dimensions each. A proof for more vectors and dimensions would proceed 

in an identical fashion, but would involve a great deal more tedious ma­

trix multiplications. Substituting A and B into Equation l4 gives. 

I = I -
Xg'Xg Xg'XgX̂ 'X̂  

X 
1 

X. X 
1 

X. 

Xl'Zl* Xz'Zg* Xe'XzXi'Zi* 
¥ 

-1 

X 
1 

X, X, X, 
(15) 
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Equation 15 can be put in the form 

h' 
X ' -X 'XX ' 

+ l/i 2 1̂  I 2 
^li F2I X, 

2 " 1 1 f 
1 

(16) 

Equation 16 is satisfied provided 

Xi = ẑ * 

and (17) 

Xg = Zg* Wf 

Since Ẑ * = (l O) and Ẑ * = (o l). Equations 17 can be combined to give 

X = z* (18) 

since Z* = I. Equation I8 can be easily converted to 

= X"! (19) 

thus completing the proof of Theorem J.  ̂

To demonstrate the fact that (l - A) ̂  B is in fact equal to X 

the example of Table 1 is worked out below. From previous calculations. 

0 -1/2 0 1/2 1/2 0 

A = 0 1/4 -1/2 and B = -1/4 1/4 1/2 

0 -1/4 1/2 1/4 -1/4 1/2 
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when 

1 0 0 
-

1 0 0 

X = 1 1 0 and Z* = 0 1 0 

0 1 1 0 0 1 

Then 

= (I-A)"̂  B = 

1 - 1 1  

0  2 - 2  

0 - 1 3  

1/2 1/2 0 1 0 0 

-1/h 1/U 1/2 -1 1 0 

1/4 -1/4 1/2 1 -1 1 

= X -1 

An interesting secondary result can be observed from Theorem 6 and 

Corollary 1. It is shown there that if the number of input vectors, m, 

is less than the number of dimensions, n, the infinite matrix series given 

in Equation 12 will not converge. Yet many example problems with m less 

than n were carried out iteration by iteration. These indicated that the 

training procedure using the continuous correction algorithm did in fact 

cause the entir̂  weighting-matrix W to converge. This result can be 

stated as a theorem and proved. 

Theorem 8. Given an input matrix X of m linearly independent n-dimen-

sional vectors, where m < n, the infinite matrix series 

W  =  B  +  A B  +  A B + .  .  .  =  E A' 
t=0 

B 

converges to a matrix such that 
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™ t 
This is true even though the infinite series S A taken alone 

t=0 
diverges. 

Proof. The proof is long and tedious and is presented in detail in the 

Appendix along with an example problem. 

This is a rather unexpected result ; that a divergent matrix series 

multiplied by a constant matrix should converge. This happens because the 

elements of the matrix A which diverge are cancelled when postmultiplied 

by the matrix B. 

Theorems have been proved concerning the learning matrix and the con­

tinuous correction algorithm when the input vectors are linearly indepen­

dent; both the case in which they span the input space and when they 

don't. Remaining is the situation in which the matrix attempts to classify 

a set of dependent vectors, That is, when m, the number of input vectors 

is greater than n. In most practical problems this will probably be the 

actual circumstances. From Theorems 5 and 6 it is known that the learn­

ing matrix can still converge. However the input matrix X is no longer 

square so that no optimum matrix X ̂  can be obtained. Unlike the case 

where m < n, if m > n, an optimum matrix W so that X W = Z* cannot 

exist. This is true because with n dimensions in each column of W there 

are only n degrees of freedom in the constraint X ¥ = Z*. But there are 

m equations to be solved since X is m by n, W is n by k, and Z* is m by k. 

When m < n, infinite solutions exist; when m = n, a single solution, 

— 1 X" , exists; and if m > n, no solution exists. The major usefulness of 

the continuous correction algorithm is therefore limited to those prob­

lems in which m < n, where convergence to a desired matrix has been 

proved. 
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The Rate of Convergence Problem 

Of course the training routine for actual pattern recognition prob­

lems could not proceed through sufficient iterations (theoretically infi­

nite) for the learning matrix to equal the desired optimum value. The 

question then arises, "How close to the optimum weighting matrix, Ŵ , does 

the learning matrix come after a certain number of iterations?" In general 

this is a very difficult question and the answer is dependent upon the 

manner in which vectors are organized into classes, and the order of the 

vectors in the training set. In the simple case in which the input vec-

-1 
tors are orthogonal, the matrix converges to the optimum X after one 

iteration. As an example of the complexity of a general analysis, the 

mathematical form of the output error matrix after one iteration is de­

rived for the simple three vector case. The desired output is considered 

to be the identity matrix, i.e., Z* = I. 

The actual output after one iteration is given by 

Z(l) = X ¥(l) = X B 

where B is as defined in Equation 8. The output error is then given by 

E(I) = Z*-Z = I- Z = I- XB. 

So that there is sufficient space to write E(i), X^ is abbreviated "l", 

Xg is "2" etc. 
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(3-2)2 
2 

2-3 

0 0 0 

(20) 

The error after just one iteration is thus a complex function of the 

inner products of the various input vectors. If the input vectors are 

orthogonal the inner products are zero and as can be seen from Equation 

20 the error matrix is zero. The last row of the error matrix is always 

zero since the learning matrix always correctly identifies the last vector 

to which it was adapted. The computation of the error matrix after the 

second iteration requires the summation of 4$ separate 3̂ 3 matrices. 

Thus further analysis along these lines becomes rapidly insurmountable 

without computer techniques. 

It would be useful to have some theory concerning the rate of con­

vergence of the infinite matrix series such as that which exists for 

scalar series. The convergence is dependent upon the magnitude of the 

eigenvalues of A, all of which were proved in Theorem 3 to be less than 

one. The development given by Varga (19) would appear to be useful and 

the following discussion and theorems are based on material presented 

there. 
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Definition 1. Let A be an n by n complex matrix with eigenvalues 

X., 1 < i < n. Then 
1 — — 

p(a) = max I A^jis the spectral radius of A. 

Definition 2. If A is an n by n complex matrix, then 

A II = [p(A'A)]2 

is the spectral norm of A. That is, the spectral norm is the square 

root of the maximum eigenvalue of A'A. 

The significance of these definitions is given by Theorem 2 which states 

that a necessary and sufficient condition for an infinite matrix series 

to converge is that the eigenvalue of A with the maximum absolute value 

be less than one. The usefulness of this theorem is limited by the diffi­

culty of finding the eigenvalues of higher order matrices. 

Definition 3» let A and B be two n by n complex matrices. If for 

some positive t, A^ II < 1  t h e n  

R{A^) = -]J1 [( IIA^II = zlnJU* 

is the average rate of convergence for m iterations of the matrix A. 

If R(A ) < R(B ) then B is iteratively faster for t iterations than A. 

Thus R(A^) theoretically provides a measure of rate of convergence. Again 

the problem is the practical impossibility of computing R(A ) for any ma­

trix A of interest. A simplification is provided for a sufficiently 

large number of iterations by the following theorem. 

Theorem 9- Let A be a convergent n by n complex matrix. For all t 

sufficiently large the asymptotic rate of convergence, R^(A), is 



www.manaraa.com

57 

defined by 

R^(A) = lim R(A^) = -In p(A). 

t—><» 

Thus the necessary computation is reduced to "merely" finding p(A). A 

further complication is involved however since how large a "t" is "suf­

ficiently large" for the theorem to hold varies for each specific example. 

The usefulness of the preceding theory is that an expression for the decay 

rate of the norm of the error matrix for an iterative process can be de­

veloped. As mentioned previously, the link between the theoretical de­

velopment and practical utilization for this method remains to be found. 

Discussion 

Since the learning matrix only approaches the desired value in the 

limit, and then only if the organizing set is composed of independent vec­

tors, an output, Z^, of binary ones and zeros is never going to be ob­

tained. Some means must therefore be used to determine from the actual 

row vector output the classification of the input vectors. Two methods 

might used. These methods and their relationship to various other pat­

tern recognition techniques are discussed below. 

First, a threshold, d, might be placed on each column output. Thus 

the output of the column would obey the following condition for each input 

and column weighting vector W.. 

1 if X.W. > d. 
1 J - J 

0 if X.W. < d. 
1 J J 

for all j 
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A perfect classification of the input vectors would result if one and 

only one column produced a 1 output for each input X^. The classification 

reduced to deciding whether an input is or is not a member of the j-th 

class. The situation is more readily explained in terms of threshold 

the hyperplane, and all other vectors lie on the other side. Figure 6a 

illustrates an example in two dimensional space where the input vectors 

are separable into three classes by one hyperplane per class. 

The present learning routine however has no provision for the computa­

tion of the thresholds d.. A different method of classification is more 

feasible. This method might be called "peak detection". The values of 

the output columns, z.are scanned and the input is classified into the 

This method is essentially analogous to classification by correlation 

coefficients as described in Chapter II. The expression or 

X.(¥. - Wj > 0 (21) 

is the equation of a hyperplane passing through the origin with a normal 

direction given by the vector (W^. - . Thus the various classes may be 

separated by the second method provided each pair of classes may be sepa-

It requires the existance of a hyperplane given by W. and functions 

such that all vectors which are members of set c^ lie on one side of 

class c. corresponding to the maximum column output. Thus, X. e c. if 

"ij - Vj > ° "ik k ̂  J, for all k. 

and (21). 
^A thorough discussion of threshold functions is given in Winder (20), 
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rated by a hyperplane through the origin. This is a stringent condition 

on the classes but not as strong as that required in the first method for 

separation. For example, the classes shown in Figure 6b could be sepa­

rated in this way but not by the threshold method. However, a serious 

disadvantage of the learning matrix training routine using the continuous 

correction algorithm is that there is no guarantee the learning matrix 

will converge to hyperplanes which perfectly separate the classes even if 

such hyperplanes exist. This difficulty is overcome by a different train­

ing algorithm for the learning matrix. 

The Error Correction Algorithm 

As discussed previously, the learning matrix cannot converge to the 

desired output Z* when the vectors of the organizing set are dependent. 

The continuous correction algorithm attempts to find weighting vectors, 

W., j f i, which are orthogonal to each input X. g c. so that X.W. = 0. 
J 1 1 1 0 

For a dependent organizing set such weighting vectors don't all exist. 

If peak detection is used to determine the output class, the learning 

matrix is adapted even when- the output is correct in a peak detection 

sense. This is'because the continuous correction algorithm considers the 

system in error if the column outputs are not binary in form; that is, a 

one in the correct column and a zero in all other columns. 

A different training routine, hereafter called the error correction 

algorithm, may be used which adapts the learning matrix only when an error 

is made in a peak detection sense. This algorithm is essentially the same 

as the error correction training routine used with the perceptron proposed 

by Rosenblatt (15). Thus the matrix is altered if and only if for an 
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input X. from the c. th class, 
1 J 

z.. < z for any k ̂  j. 
— ik 

(22) 

The method of adaption is as follows : 

"w ft - if X W (t-ll > X W (t-l) all k ̂  j 

Wj(t) = 4 

W (t - l) + px^' if X^Wj(t-l) < X^Wj^(t-l) any k f j 
\ 

(23) 
^W^(t-l) if X^Wj(t-l) > X^W^(t-l) all k ̂  j 

\ ( t )  =  

¥j^(t-l) - pX_' if X^W^(t-l) < X^W^(t-l) any k ̂  j 
\ 

where 0 < p < 1. The factor p is used so that only a percentage of X^ 

may sometimes be added or subtracted to appropriate weight vectors. The 

reason for this is based on physical considerations in building a learn­

ing matrix. For some methods of realization it is necessary to keep the 

absolute value of each component of the weighting vectors, w^^, which 

represent the connections between the input and output of the matrix, 

less than one. For instance, the maximum coefficient of coupling possible 

between induction coils is unity. 

A big incentive, for using the error correction algorithm is that it 

can be proved that if a solution to the pattern classification problem 

exists in terms of hyperplanes through the. origin separating each pair of 

classes, the learning matrix will converge to such hyperplanes in a finite 

number of adaptions. The proof follows closely that given by Wovikoff (l2) 
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for a similar convergence problem. 

The difference between the learning matrix and other pattern recogni­

tion techniques (Highleyman (9) ) which are based on hyperplane separa­

tion, is that the technique presented here finds a weighting vector for 

each class and a hyperplane for each pair of classes by subtracting the 

weighting vectors for that pair. In methods that use a separate hyper­

plane for each pair of the k output classes the necessary number of hyper-

planes is given in Chapter II as k(k - l) / 2. With the learning matrix, 

only k weighting vectors need be found. The drawback however, is that 

the hyperplane defined by subtracting the weighting vectors of the learn­

ing matrix are constrained to pass through the origin of the n-dimensional 

space whereas the class-pair hyperplanes defined by Highleyman (9) may­

be located anywhere in space. Thus pattern recognition problems exist in 

which perfect classification is possible with k(k - l) / 2 hyperplanes 

but for which the learning matrix cannot provide a perfect solution. This 

ability is sacrificed for simplicity in that less weighting vectors must 

be found. 

To prove the theorem concerning the convergence of the error correc­

tion algorithm, a problem is considered in which a group of vectors in an 

n-dimensional space are to be classified into two output sets. An exten­

sion of the proof to more than two sets can easily be made by considering 

each two sets separately. The two sets of inputs are designated A = 

(a^, a^, • • . ofg) and B = The method of classifica­

tion is by peak detection. That is, two weighting vectors, and 

are to be found such that the following conditions are met: 
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+ d for i = 1,2, . . .g 

P.-W > p. •¥ + d for j = 1,2, . , .h. 
J. D J a-

The constant d is the discrimination level. It is a sort of safety factor 

to ensure the classes are sufficiently separated. In many cases it may 

be set equal to zero. Figure 10 shows a two dimensional space where the 

sets A and B are designated. Possible weighting vectors and are 

also shown and the significance of the discrimination level d can be seen. 

The sets are separated by parallel hyperplanes each a distance d from the 

origin. Thus for perfect classification of the inputs, the sets must be 

a distance 2d apart. 

The method for obtaining suitable weighting vectors is the error 

correction algorithm of training the learning matrix as given in Equation 

23. A further explanation is given as follows: Construct an input se­

quence, S, of vectors taken from sets A and B. One method would be to 

alternate between sets A and B although this is not necessary. Thus an 

input vector is selected and dotted into and If the wrong re­

sponse results (in a peak detection sense) the weighting vectors are 

adapted by adding the input vector to the weighting vector corresponding 

to the correct classification and subtracting the input vector from the 

other weighting vectors in accordance with Equation 23. 

The next theorem pertains to the convergence of the error correction 

algorithm. 

Theorem 10. Consider two sets of n-dimensional vectors, A = 

(a^, Og, . . . a) and B = (p^, P^, . . . P^). If the pair of sets 
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Plane for which 

Set A 

¥ -W, 

2d 

Plane for which 

Figure 10. Separating hyperplanes with discrimination level d 
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is separable by a hyperplane through the origin with normal direc­

tion given by that is, if any weighting vectors and ¥^* 

exist so that all inputs can be properly identified in a peak detec­

tion sense, the error correction algorithm will converge to some 

vectors, and W^, which will perfectly classify the inputs of A 

and B. 

Proof. It is known from the hypothesis of the theorem that some vectors 

W * and ¥, * exist such that 
a b 

a. •¥ * > (%. •¥, * + d (24) 
1 a 1 b ^ ' 

and 

p . - ¥ ,  *  >  p . - W  *  +  d .  (25), 
J D J 3-

These can be rearranged to give 

%.'(¥%* - > d (26) 

p  . • ( ¥  *  -  ¥  * )  >  d .  (27) 
J b 8. 

By letting ¥ * - ¥ * = V* and p. = -P., Equations 26 and 27 are 
a- D 0 J 

given by 

arY* > d (28) 

pj-v* > a. (29) 

Wow since all inputs, and P^, satisfy the condition as given in 
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Equations 28 and 29, eacli input can be des.i.f/naLeU a;; i: Imply X... I'lie con­

dition that perfect classification of all inputs is poss.ib.l.e then i:.; {':i.ven 

by 

X > d. 

Equation 30 itJ true for all Inputs cy. and p.. 

A new input sequence is now i.'on::truc.tc(l cuinjiosrU unJ.y of those in­

puts for which an adaption to the weifihtin,": vectors occurs. Ll.iui'c no 

change is made in the weifihtinc; vectors for inputs i' tn.ssif i.cil corn-r tly. 

these inputs could be ignored. A trainiu;'; i;i then j.i.'ft I'or whii'h 

adaption takes place with every 'input. Thi' sca.Ui.r "f" w.i.L.L h(' uScmI to 

indicate the r-tii input of the trai.niuM sequeuco, llinci' corr-c'tion t.'ikci; 

place with every input, for each r, the c'luat i on be.l.ow iiiiis.t ho.l.d. 

X(r)-V(r) < d ( •; 1.) 

where V(r) = W^(r) - Wj^(r). If I'l'juation j.L w('re not Lr'uc, no .'uJapI, i on 

would take pJ.ace . But these injjuts h.'i.ve Iven removed hy dej.' i n i Li on. 

ïhe assertion of Thieorem LO is that r, whi'di count.", the nniuhrf ol' 

adaptions, is finite. Thus after some poiriL, a.L.L .input.", arr cl,;!,;;.". i ['i'̂ d 

correctly. An equ i.va.l.en t statement I.;; Lhat .Kquati.on whicli ."./i.y;; ;i,.| 1 

inputs are class .i..['if;d correcti.y .f.'or s orne V*, and Equation j I., wli i /'h L;i, L'\". 

an adaption occurs .I.'or the pre.';erit V(r), carinr;!, roriL inue i,o ho Ld foi" ;i, | I 

r. Eventually V(r) wi.LL come su.f'f i cieriL Ly c.Lose Lu Lhe idffij. V̂ - .",0 tti'i.L 

all inputs are classified correcL.Ly. 
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From the error correction algorithm with p = 1, it can be shown 

V(r) = W^(r - l) - ¥^(r - l) + AV 

V(r) = [Wg_(r - l) + X(r)] - [W^(r - l) - X(r)] 

V(r) = V(r - l) + 2 X(r). 

Thus 

V(r) = V(0) + 2 [X(l) + X(2) + . . . + X(r)] . 

Taking the dot product of V* and V(r) gives, as a function of r. 

V(r)-V* = V(0)'V* + 2 X(l)*V* + . . . + 2 X(r)-V*. 

Now using Equation 30, 

V(r)-V* > V(0)"V* + 2 r d. 

From Schwartz* inequality it is known that 

2 2 2 
V(r)-V* < V(r) V* 

Thus using 33 and 3^= 

V(r)  ̂ r.V(o)-V* + 2 r dl^ 
2 

V* 
> 

Thus a lower bound for V(r) has been established. 
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Wow using 31 and 32 it follows that 

2 2 2 
V(r) - V(r - 1) = V(r - 1) + 2 X(r) - V(r - 1) 

= 4 V(r - l)-X(r) + k I X(r) 

< 4 (d + M) (36) 

where M = j X(r) . Summing both sides of Equation 36 as r ranges from 

r = 1,2, . . . gives, 

r 2 2 r 
S [ V(k) - V(k - 1) ] < S 4 (d + M) 
k=l k=l 

V(l) 

V(r) 

V(r) 

V(0) 

V(0) 

< jv(o)  

+ v(2) - V(l) 

< 4r (d + M) 

+ 4r (d + M) . 

+ . . . < 4r (d + M) 

(37) 

Thus an upper bound for V(r) has also been derived. Equations 35 and 37 

cannot continue to hold for all r. Thus some point is reached where 

adaptions no longer take place and Theorem 8 is proved. 

An upper bound for r can be found by substituting Equation 35 into 

37. For simplification, V(o) is assumed to be 0. Then 

r < 4 (d + M) ( V* I 

4 d" 
(38) 
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Note that as d becomes small, the upper bound on r becomes greater. This 

occurs since d is a measure of the amount of separation between the 

classes. The closer the classes are, the more adaptions required for per­

fect classification. The separation distance d cannot be zero since then 

the hypothesis that the classes are in fact separable would not hold. 

Actual values for r were found by Ishida (lo) in a computer simula­

tion of threshold elements. His study is analogous to the separation of 

inputs into two classes as presented here. A comparison of the theoreti­

cal upper bound given by Equation 38 and the actual adaptions required 

for perfect separation of two classes as presented by Ishida discloses 

that the average computed value is roughly 20 percent of the upper bound. 

The upper bound is thus quite conservative. 

An example problem is given in Tables 2 and 3 in which four inputs 

are classified into two classes using each of the training algorithms. 

The two output sets for these tables are =^(l 0 O), (l 0 l)^ and 

= /(ill), (011)^. The other necessary data are, 

10 0 1 0 
0 0 

1 1 1  0 1 
X = 

10 1 
w(o) = 0 0 

0 0 

and Z* = 
1 0 

O i l  0 1 
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Table 2. Two iterations of training the learning matrix using the con­
tinuous correction algorithm to classify four inputs into two 
output sets. 

Iter- Ma- ' Input 
ation trix 

"=2 *3 ''4 

z (0 0) (1 0) (1/3 2/3) (-1/3 1/3) 

1 0 -1/3 1/3 1/3 -1/3 0 0 

m 0 0 -1/3 1/3 0 0 1/6 1/3 

0 0 -1/3 1/3 1/3 -1/3 1/6 1/3 

1 0 2/3 1/3 1 0 1 0 

w 0 0 -1/3 1/3 -1/3 1/3 -1/6 2/3 

0 0 -1/3 1/3 0 0 1/6 1/3 

z (1 0) (1 1) (1/2 1/3) (-5/12 5/6) 

0 0 -1/3 0 1/k -1/6 0 0 

AW 0 0 -1/3 0 0 0 5/24 1/12 

0 0 -1/3 0 1/k -l/6 5/24 1/12 

1 0 2/3 0 11/12 -1/6 11/12 -1/6 

¥ -1/6 2/3 -1/2 2/3 -1/2 2/3 -7/24 3/4 

1/6 1/3 -1/6 1/3 1/12 1/6 7/24 1/4 

The output matrix after two iterations is thus given by, 

Z = X W(4,2) 

11/12 -1/6 

11/12 5/6 

29/24 1/12 

0 1 
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The only misclassified input is which is placed in rather than 

since ll/l2 > 5/6. 

Use of the error correction algorithm on the same problem is given in 

Table 3. 

Table 3. Classification of four inputs into two output sets using the 
error correction algorithm. 

Iter- Ma- Input 
ation trix 

t Xg, X^_ 

z (0 0) (1 -1) (-1 1) (-1 1) 

1 -1 -1 ,1 1 -1 0 0 

1 AW 0 0 -1 1 0 0 0 0 

0 0 -1 1 1 -1 0 0 

1 -1 0 0 1 -1 1 -1 

W 0 0 -1 1 -1 1 -1 1 

0 0 -1 1 0 0 0 0 

z (1 -1) (0 0) (-1 1) (-2 2) 

0 0 -1 1 1 -1 0 0 

OJ 

0 0 -1 1 0 0 0 0 

0 0 -1 1 1 -1 0 0 

0 0 0 0 1 -1 1 -1 

w 0 0 -2 2 -2 2 -2 2 

0 0 -1 1 0 0 0 0 

The output matrix after two iterations with this algorithm is 
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1 -1 

-1 1 
X w = z = 

1 -1 

- 2  2 

All inputs are classified correctly and no further adaptions ever need be 

made to the learning matrix. The scalar r in this example is five, since 

five adaptions were made during the training process. 

The hyperplane which divides the two classes can be determined for 

each algorithm by subtracting the weighting vectors. The resulting vec­

tor is the normal to a plane passing through the origin. For the con­

tinuous correction algorithm. 

The first plane misclassifies one input, X^, while the second plane per­

fectly separates the two sets. The error correction algorithm is there­

fore the superior training method. 

Two topics remain to be discussed. These are analog inputs, and the 

generalizing ability of the learning matrix. 

V^2 = \ - Wg = (11/12 -7/24 7/24) -(-1/6 3/4 1/4) 

= (13/12 -25/24 1/24). 

For the error correction algorithm, 

V^2 = - Wg = (1 -2 O) - (-1 2 O) 

= (2 -4 O). 
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Analog Inputs 

Analog inputs, cases in which the values of the input vectors, x^, 

Xg, . . ., x^ may be any value, give the learning matrix no particular 

difficulty. The length of the input vectors using the binary variables 

0 and 1 varies anyway. If binary variables 1 and -1 are used, all inputs 

1/2 
have a length [n] ' where n is the number of dimensions. Using the con­

tinuous correction algorithm, normalization takes place with each adap-

II 2 X. . Thus each component of AW is divided by 
i| 
, 2 

a normalization factor I  X. . A factor of normalization could also be 
1 

employed with the error correction algorithm, either by varying the 

parameter p in Equations 23, or by dividing each component of X: by | X^j ̂  

The classification performed by the learning matrix is changed if 

each of the weighting vectors is normalized after the training period is 

terminated. With no normalization, two classes are separated by a hyper-

plane through the origin defined by H'W^ = H'W^ where H is a vector lying 

in the hyperplane. This hyperplane has a normal direction given by W -W^. 

n 2 
If each of the weighting vectors is normalized, so that S w.. =1, all 

i=l 
weighting vectors have the same length and can be considered to terminate 

on a hypersphere. Classification is then by angular similarity entirely. 

An input is associated with the weighting vector with which it forms the 

smallest angle. In many problems, classification by normalized weighting 

vectors will be an improvement over the non-normalized weighting matrix. • 

In addition, the normalization forces all weighting matrix values, w^^, to 

be less than one, a desirable condition for some methods of physical 

implementation. 
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Generalizing Ability 

The question of the generalizing ability of the pattern recognition 

system may be phrased as follows : "How well will the learning matrix 

separate patterns which are not included in the training set but which are 

to be separated into the same classes?" This is a question which involves 

the error rate on new patterns and can be answered only by testing the new 

data. It is reasonable to assume that new patterns which are close to old 

patterns will be similarly classified. The importance of-having patterns 

in the training set which truly represent the pattern class is thus dra­

matized. If the training set does not provide a true cross section of an 

input class, new patterns will likely be misclassified. The performance 

of the learning matrix is demonstrated in another chapter where the re­

sults of a computer simulation are presented. 
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ELEMENTS FOR LEIAMIWG MâlRIX IMPLEMEWTATIOIT 

The physical realization of the learning matrix hinges on the avail­

ability of variable weighting elements, w^^, to serve as a connection be­

tween the input and output lines of the matrix. Such components must have 

several distinctive properties. 

Ideally the gain or value of these elements should be continuously 

variable, at least over a normalized range of plus one to minus one. Once 

set, the value of the gain should be permanent until further adaption 

takes place, A linear relationship would be desirable between the adap­

tion signal and the gain of the element but such a relationship is not 

absolutely neccssary. 

The element also must provide a means for non-destructive readout of 

its stored value. This readout should be in the form of the product of a 

sense signal and the stored value, w^^. Thus upon application of the 

sense signal, x^, (often a current or voltage) an output x^^w^^^ is ob­

tained. For example, in the learning matrix, the output of each column, 
n 

"Ij- "ij ° "iAj ' 

The jnost significant results so far in efforts to develop variable 

weights for learning networks have been in the area of magnetic phenomenon. 

One reason for this may be the intensive research effort which magnetics 

has received as a result of the success of magnetic memories for digital 

computers. The development of several recent devices which could be used 

to implement the learning matrix is discussed briefly. 

Hawkins (6) has proposed a ferrite toroid which he calls a "magnetic 

integrator" as a variable weight element. The value of the weight is 

stored as the amount of flux linking the toroid and this is varied by 
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means of an adapt winding on the toroid. Because of hysteresis loss in 

the toroid the residual flux can be set at various levels. Non-destruc­

tive readout is obtained by the application of a magnetic field orthogonal 

to the normal direction of magnetization of the toroid. The change in the 

magnetization vector when the sense field is applied is picked up by a 

sense coil on the toroid. The voltage induced is proportional to the 

amount of stored flux and the magnitude of the sense field. A small 

adaptive array (five elements) was constructed using this procedure and 

satisfactory results were reported. 

A different approach is reported by Crafts (2). His element consists 

of a pair of tape wound cores driven from a radio-frequency power source. 

A sense winding also links the cores - being wound one direction on one 

core and the opposite direction on the other core. With this arrangement, 

shown in Figure 11a, the fundamental component of radio-frequency voltage 

in the sense winding is cancelled but a second-harmonic distortion voltage 

is left which is proportional to the remanent flux in the cores. The 

remanent flux level can be altered by passing a direct current through the 

output winding. Due to an interaction between the dc adaption current 

and the rf drive current, the time rate of change of the remanent flux, 

with respect to the adaption current, is quite constant and reversible, 

thus providing a smoothly variable gain with permanent memory. 

The element with perhaps the most promise is an adaptive, magnetic 

thin film device which is described in Pohm, Allen, and Mlsson (I3). 

This device, shown in Figure lib, consists of two film-coated wires; one 

of which is used as a storage element and the other as a sensing element. 

In the storage element the easy direction of the film is axial while the 
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sense element has a circumferential easy direction. The sensing element 

behaves as a magnetic film balanced modulator with an output which is 

approximately a product of the field which represents the stored weight 

and the derivative of an input sensing field. Preliminary experimental 

results on a two by two array indicate satisfactory performance although 

many engineering problems remain to be solved. 

Since the learning matrix can be successfully simulated on a digital 

computer, the question might be asked, "What can adaptive networks do 

that computers cannot already do?" The answer is, in most cases, nothing. 

However, an adaptive network or learning matrix still has many advantages 

over a digital computer. First of all, adaptive networks, being inher­

ently parallel data processors, cannot be simulated efficiently with a 

computer which operates in a serial fashion. As pointed out in the next 

chapter on computer sijnulation, up to ten minutes of 707^ time was re­

quired for simple recognition experiments. Adaptive networks not only 

operate on all the input vector components in parallel, but also perform 

operations of multiplication and summation in parallel. Thus a big ad­

vantage of an actual adaptive device is its speed of operation. 

Adaptive networks could also be designed to accept analog inputs 

directly from the environment. A digital computer would in general re­

quire a greater amount of proprocessing of the input data. 

In addition, there are many pattern recognition applications for 

which the cost of an all purpose digital computer could not be justified. 

An adaptive network specially designed for a specific group of tasks 

would be much more economical. 
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The -ultimate choice of an adaptive element for learning matrix ap­

plications must be based upon the engineering criteria of economy, reli­

ability, and versatility. If suitable components can be developed, the 

inherent advantages of adaptive systems can be incorporated into future 

data-processing machines. Such systems could combine the advantage of 

adaptive networks with the versatility of digital computers to achieve a 

machine with valuable properties of both systems. 
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COMPUTER 8IMUIAII0# OF THE lEAElIlG MATRIX 

Introduction 

The learning matrix was simulated on a digital computer to test the 

previous theory on a practical pattern recognition problem. As suggested 

by Rosenblatt (15) a simulation program for pattern recognition should ful­

fill three basic conditions. 

1) Simulation should not be attempted without a theoretical analysis 

of the pattern recognition system. Such an analysis should suggest suit­

able experimental parameters and should indicate questions of theoretical 

interest. 

2) Suitable measures of performance must be defined. This means 

that some task must be set for the system, the outcome of which can be 

clearly recognized and quantified. 

3) Experiments must be designed with suitable controls against triv­

ial or ambiguous results. 

The simulation was planned with these three conditions in mind. The 

mathematical considerations of the previous chapter provide a theoretical 

background to be tested in the simulation. The measure of performance set 

for the learning matrix is the percentage of correct classifications of 

input patterns. The experiments to be described provide a rigorous test 

of the ability of the matrix to perform a pattern recognition function. 

The Iowa State University Computation Center IBM 70^4 Digital Com­

puter was used for the simulation. An abbreviated flow diagram for the 

Fortran program is shown in Figure 12. Actually two programs were de­

veloped; one for the continuous correction algorithm and another for the 

error correction algorithm. These different programs are shown by the 
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dotted lines in Figure 11. 

Description of the Computer Program 

The first step in the program is the input of the vector, X^. In 

general this could represent any type of pattern; a letter, a number, a 

waveform, any ou-'-put from the transducer portion of the pattern recogni­

tion system. This vector is postmultiplied by the weighting matrix W to 

give the output row matrix Z^. A branching is then made depending upon 

whether the operation of the system is presently in the training or the 

recognition mode. If in the training mode, the learning matrix is adapted 

according to one of the two algorithms described in the previous chapter. 

Adaption then proceeds with the remainder of the organizing set for a 

number of iterations fixed by the experiment. If in the recognition mode, 

the maximum component of is found (which represents the assigned pat­

tern class) and compared with the true class for this input. A counter 

for correct or incorrect responses is stepped and the program either pro­

ceeds to recognize the next input, or returns to the tr.aining mode for 

additional adaption of the learning matrix. Provision is also made to 

compute the- percentage of correct responses during any experiment. 

The performance of any recognition method depends not only upon the 

system itself, but also upon the type of characters or patterns encountered 

by the system. The recognition rate also depends strongly upon the amount 

of preprocessing a pattern receives before being presented to the cate-

gorizer. Comparison among various recognition methods is difficult, 

especially if the methods do not operate on the same data. 
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Description of the Patterns 

To help establish a reference for comparison, the experiments re­

ported here are based upon a set of hand-printed numbers prepared and used 

by Dr, W. H. Highleyman (8,9)5 formerly of the Bell Telephone Laboratories. 

The data consist of 50 sets of hand-printed arabic numerals, zero through 

nine, and 50 sets of machine-printed numbers from an IBM h07 line printer. 

The hand-printed numbers were printed by 50 different people. These per­

sons were required to print neatly on -ç-inch quadrilled paper at a size 

approximating the rules boxes on the paper. Some s simple s of the data 

are given in Highleyman (8) and Figure I3. The data were then automati­

cally reduced to a 12 x 12 binary matrix by an optical matrix scanner and 

encoded on punched cards with an octal code. The use of the octal code 

on the cards required a subroutine in the simulation program which con­

verted the octal code back to a binary representation. Since the char­

acters are quantified onto a 12 x 12 matrix, each pattern is represented 

by a l44-dimensional. vector, each dimension being a binary one or zero.. 

The characters were roughly centered by using center of gravity alignment. 

However, the character size was not normalized and the size variation is 

about two to one. These cards, obtained through Dr. W. H. Highleyman are 

the input vectors, X^, to the simulation program. The machine printing 

is fairly uniform but some of the hand-printed numbers are crude to say 

the least. To demonstrate how bad some of the handprinting actually was, 

50 of the hand-printed numbers were drawn on cards. Ten people were 

asked to recognize the numbers and the resulting average human recogni­

tion rate was only 78%. The numbers thus contain a large amount of 

"noise" since no two patterns in the same class were exactly alike. 
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Figure I3. Examples of hand-printed numbers. The negative numbers 
below each figure represent the highest and next highest 
column outputs after four iterations using the error 
correction algorithm. Figures a) and b) are correctly 
identified; c) and d) are mistakes 
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This points out the difficult job of classification a pattern recognition 

system has with this set of data. 

Actually additional data was available in the form of 50 sets of 

hand-printed alphabets. However a limited amount of computer time made 

experiments based on the entire set of alphanumeric data impossible. To 

complete one iteration using all 50 sets of both letters and numbers would 

have required approximately six hours of IBM 7074 time. The actual number 

of experiments which could be performed on just the numerical data were 

in fact limited by the amount of unsponsored research time which could be 

obtained for this project. The total time used in all the simulated learn­

ing matrix experiments was 100 minutes. Projects of this type require 

excessive time due to the inherently complex multiplications which must be 

completed. With l44 dimensions and ten output classes the weighting ma­

trix has l44 rows and ten columns. One computation of Z = X W thus re­

quires l44 x 10 = l440 multiplications. 

Results 

The experiments were designed to test the recognition rate of the 

learning matrix using each of the training algorithms. Two types of ex­

periments were performed; one in which the number of vectors in the organ­

izing set was less than the number of dimensions, and the other in which 

the organizing set was composed of all 500 inputs. Also investigated was 

the effect of a threshold or discrimination level to provide for rejection 

of questionable decisions. 

In the first experiment, an organizing set of 100 vectors, (ten ones, 

ten twos, etc.) was used to adapt the learning matrix. The pattern 
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classes each were presented in turn - that is, the first one, the first 

two, and up through the first zero and then the second one etc. After 

each training iteration with these 100 vectors, 120 vectors were classi­

fied by the matrix. The first 100 of these "being the organizing set and 

the next twenty inputs being numbers which the matrix had not previously 

"seen". Table 4 and Figures l4a and l4b show the recognition rate of the 

matrix for the machine-printed numbers using the continuous correction 

procedure and also for the hand-printed numbers using the error correction 

algorithm. 

Table 4. Recognition rates for experiments with 100 inputs in the train­
ing set. 

Type Algorithm Iteration Recognition rate (jo) 

of used number  ̂
„ , Organizing New in­

set (lOO) puts (20) 

Machine-
printed 

Continuous 
correction 

Hand­
printed 

Continuous 
correction 

Hand­
printed 

Error 
correction 

1 99 100 
2 99 100 
3 99 100 
k 99 100 
5 99 100 

1 77 35 
2 84 45 
3 91 4o 
k 95 4o 
5 95 35 

1 76 25 
2 78 25 
3 80 20 
4 87 25 
5 98 20 
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Figure l4. Recognition rate versus number of iterations for an 
organizing set of 100 hand-printed inputs. 
a) Recognition rate for the 100 inputs which were 
members of the organizing set 
b) Re##gm#Bion rate for the 20 inputs which were 
not members of the organizing set 



www.manaraa.com

88 

Continuous correction algorithm 

Error correction algorithm 

% 

2 3 4  

Number of iterations (t) 

a) 

2 3 
Number of iterations (t) 

b) 



www.manaraa.com

Note that the machine printing was nearly perfectly classified (one 

error) by the matrix. This indicates the importance of the type of data 

•used in any experiment. Using the continuous correction algorithm, the 

handprinting recognition rate increased from 77 percent one iteration to 

95 percent after four iterations. Although the rate did not increase from 

four to five iterations, examination of the outputs in each case indicate 

the size of the error on the five mistakes which were made had decreased. 

Thus convergence was still continuing. The generalizing ability of the 

matrix was poor; the rate on the 20 inputs not members of the organizing 

set being 35-̂ 0 percent, which did not improve with further training. 

This indicates that the organizing set size was not large enough to in­

clude the many variations that occur within each pattern class. Wo further 

training will improve the recognition rate on these inputs which are in­

sufficiently similar to the patterns in the organizing set for correct 

recognition to occur. 

Using the error correction algorithm, the recognition rate increased 

to 98 percent after five presentations of the organizing set. The value 

of p (see Equation- 23) used in the algorithm was 0.1, Thus as explained 

in the previous chapter, ten percent of the input vector was added or sub­

tracted to appropriate weighting matrix columns when an adaption occurred. 

The value of p which is used makes no difference in the recognition rate. 

It only affects the size of the weight elements ŵ .̂ The weight elements 

were all negative as shown from the column outputs in Figure I3. This 

simply means inputs were more often subtracted than added to column vec­

tors during the adaption process. The highest column output is thus the 

least negative. Once again the recognition rate on inputs not in the 
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organizing set was poor. Figures Igc and 13d show two inputs which were 

incorrectly identified with the error algorithm after four iterations, 

The highest and second highest column outputs are also shown below the 

figures, 

In another experiment, the matrix was trained with each algorithm on 

all 50 sets of numbers, $00 inputs in all. Table 5 presents these re­

sults . 

Table 5. Recognition rates for experiments with 500 inputs. 

Type of Algorithm Iteration Recognition 
data used number rate (%) 

Machine- Continuous 1 99.2 
printed correction 

Hand­ Continuous 1 57.4 
printed correction 2 60.0 

Hand­ Error• 1 64.6 
printed correction 

Once again the matrix classified more than 99 percent of the ma­

chine-printed numbers correctly. Figures 15c and 15d show two machine-

printed numbers upon which mistakes were made. Using the continuous cor­

rection algorithm with the hand printing, the recognition rate increased 

from 57.4 percent after one iteration to 60.0 percent after two itera­

tions. The error correction algorithm classified 64.6 percent of the 500 

inputs correctly after only one iteration. 
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Figure 15. Examples of machine-printed numbers. The numbers 
below each figure represent the highest and second 
highest column outputs after one iteration with 
500 inputs using the continuous correction algorithm. 
Figures a) and b) are identified correctly; c) and 
d) are mistakes 
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Figures l6a and l6b are "confusion matrices" or the distribution of 

errors for each of the algorithms. As can be seen, several types of 

errors are prevalent. For instance, with the continuous correction algo­

rithm, 12 fours were identified correctly and l8 were misclassified as 

nines. Also, ten twos were identified as sevens. With the error correc­

tion algorithm, ten threes and 21 fives were thought to be eights. !Ehe 
J 

"tie" column with the error correction algorithm indicates instances in 

which two output columns were exactly the same so that no classification 

could be made. 

Again the error correction algorithm is superior to the continuous 

correction technique. It also required less computer time - six minutes 

for one iteration versus 10§ minutes for the continuous correction algo­

rithm. It is expected from the theory developed that the error correc­

tion algorithm would be superior in instances where the number of inputs 

in the organizing set is more than the number of dimensions of each in­

put, l44 for these experiments. 

Performing more than one iteration with $00 inputs is a difficult 

task in this computer simulation. There is not enough storage space in 

the computer to store the program and working data and also the data 

from all $00 input cards. Thus each card must be operated upon individ­

ually. Once the 500 cards have been used to adapt the matrix they cannot 

be reused for recognition. Thus two complete sets of cards were used. 

More iterations were possible with 100 inputs because these could be 

copied onto a work tape and the tape rewound many times. The data from 

500 inputs is too much for one input tape and-excessive time is used if 

several tapes were employed. The one case in which two iterations were 
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Figure l6. Confusion matrix for an experiment with $00 hand-printed 
inputs after one iteration. The table presents the dis­
tribution of errors for the experiment 
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made with the 500 inputs was accomplished by outputting the l44o weighting 

matrix values, w.and then setting the matrix to these initial values 

for another iteration. About 20 minutes of computer time was required for 

this entire operation. These are the reasons lûore experiments were not 

performed on the complete set of 500 inputs. 

Another technique which can be considered in the experiments is the 

introduction of a rejection criterion or threshold. In using a threshold, 

or discrimination level, a decision is rejected as unreliable if the dif­

ference between the largest and second largest column outputs is not 

greater than the discrimination level, d. Figure 17 is a plot of dis­

crimination level versus rejection rate and error rate for each training 

algorithm with 500 inputs. Table 6 presents the data in tabular form. 

Table 6. Error and rejection rates versus discrimination level for 500 
hand-printed inputs after one iteration. 

Algorithm Discrimination Error rate Rejection rate 
used level, d percent percent 

.00 42.6 0.0 

.01 39.8 4.0 
Continuous .02 38.0 7.0 

.03 36.6 9.0 
correction .04 34.8 11.2 

.05 33.0 13.0 

.00 31.8 3.6 

.01 28.2 9.6 
Error .02 24.8 15.4 

.03 22.6 20.8 
correction .ok 20.4 25.0 

.05 20.0 27.0 
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level for 500 hand-printed inputs after one itera­
tion 
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Note that the error rate can be reduced but at the rather large expense 

of increasing the rejection rate. Hopefully the use of the rejection 

level would reject more decisions in which a mistake has been made than 

decisions which were correct. For the experiments demonstrated here, the 

use of a rejection zone does not appear to be justified. 

Discussion 

A comparison of the results reported here and results of other pat­

tern recognition methods operating on the same data can be made. The 

actual recognition rates obtained in the computer simulation are not as 

important as the verification of the training algorithms proposed in the 

theoretical development. The actual performance of any categorizing 

method depends strongly upon the data upon which it operates. Complete 

comparison of the results reported here and other published results using 

this same input data is not possible since a recognition rate for a given 

experiment using the learning matrix has significance only when discussed 

in terms of the number of training iterations completed. 

However, all other studies report recognition rates of the machine-

printed data in the order of 99 percent, the same as reported here. Re­

sults with the hand-printed data vary from 83 percent in Highleyman (8) 

to 97 percent in Chow (l). Highleyman uses a "template matching" or cor­

relation technique in which all the input data is examined and a weight­

ing vector is found for each pattern class. The highest rate of 97 per­

cent reported by Chow uses a method called "neighbor dependence". With 

this method, which is based on statistical decision theory, computations 

must be made to find the conditional probability that a point of the 
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12 X 12 matrix is covered if any of its neighbors is covered. The mecha­

nization of such a network would be extremely difficult and the simula­

tion required considerable computer time. Neither of these methods has 

the advantage of being adaptive. That is, they require all the input data 

to be present at the beginning; then the weighting factors are computed 

and are not changed thereafter. A big advantage of the iterative algo­

rithms of the learning matrix is that each input is considered sequentially. 

Recognition can be attempted at any time in the training routine and ad­

ditional training may easily be completed at any time. A relatively 

simple implementation of the learning matrix is also possible as describ­

ed in the previous chapter. 

A trade off must be employed in any pattern recognition system be­

tween sophistication and recognition rate. A simple system will not per­

form as well as a complex one. Although the 64.6 percent rate achieved 

by the learning matrix after one iteration on 500 inputs is lower than 

that of other methods, the rate would improve with further training. The 

experiments on 100 inputs indicate that this would be the case. The 

proof of the previous chapter (Theorem 10) that the error correction algo­

rithm will find a solution if one exists is further evidence of improve­

ment . 

Summary 

The results of the simulation experiments indicate the following con­

clusions can be made. 

l) The learning matrix increases its ability to classify patterns 

as it receives additional training. Recognition rates on 100 inputs in­
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creased from 77 percent to 95 percent in five iterations using the con­

tinuous correction algorithm and from 76 percent to $8 percent using the 

error correction algorithm. 

2) The learning matrix is a particularly effective pattern cate-

gorizer if the input patterns are relatively uniform. For example ma­

chine-printed numbers were recognized with 99-2 percent accuracy even on 

numbers not members of the organizing set. 

3) The learning matrix classified poorly (25-̂ 5 percent) hand-print­

ed numbers not members of the organizing set. This is an indication that 

more inputs are needed so that the organizing set better represents the 

pattern class. 

k) The error correction algorithm was superior to the continuous 

correction algorithm in every instance. It also took less computer time 

to simulate. 

5) Use of a discrimination level with the learning matrix is not 

justified. The error rate can be reduced, but at the rather large expense 

of rejecting many inputs. 

It is felt that the computer simulation fulfilled its purpose since 

the algorithms for training the learning matrix were found to operate 

sucessfully on a difficult, practical, pattern recognition problem. 
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SUMMARY ifflD CONCLUS lOIJS 

This dissertation has considered a particular type of categorizer 

for pattern recognition applications called a learning matrix. This de­

vice is a matrix-like circuit structure in which the connections between 

input rows and output columns are variable parameters. The matrix is said 

to "learn" since its performance in a pattern recognition experiment im­

proves over a sequence of trials. 

A review and classification of pattern recognition methods has been 

presented. These are divided into three categories called correlation 

coefficients, linear decision functions, and statistical decision theory. 

Two training algorithms for adapting the learning matrix have been 

developed. The first of these, called "continuous correction" adapts the 

learning matrix after each input and attempts to produce binary column 

outputs of one or zero. It is proved for this algorithm that the learn­

ing matrix will converge to a desired value if and only if the vectors of 

the input set are independent. Inputs are assigned to a pattern class by 

a "peak detection" method. That is, an input is assigned to the class 

associated with the maximum column output of the matrix. 

The other training procedure is the "error correction" algorithm. 

With this method, the learning matrix is adapted only if a given input 

is misclassified in a peak detection sense. It is proved that this train­

ing procedure will converge in a finite number of adaptions to a matrix 

which will properly classify any number of inputs, provided a perfect 

classification is in fact possible. 

A geometrical interpretation of the algorithms is given in terms of 

hyperplanes which separate each pair of pattern classes. If a discrimina-
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tion or rejection criterion is used, the class-pair separation is by a 

pair of hyperplanes, symmetrically located about the origin. 

A digital computer simulation of the learning matrix has furnished 

numerical results of the use of the learning matrix in an actual pattern 

recognition problem. The patterns which were recognized consisted of 50 

sets of handwritten and machine-printed numbers which were originally pre­

pared by Dr. ¥. H. Highleyman formerly of Bell Telephone Laboratories. 

The learning matrix properly classified 99.2 percent of the 500 machine-

printed numbers after only one training iteration with these same 500 in­

puts. The recognition rate on 100 hand-printed numbers increased from 77 

percent to 95 percent in five iterations using the continuous correction 

algorithm. The recognition rate on the complete set of 500 hand-printed 

numbers increased from 57-̂  percent to 60.0 percent in two iterations using 

the continuous correction algorithm. With the error correction algo­

rithm, 64.7 percent were classified correctly after only one iteration. 

Several possible physical implementations for the learning matrix 

are also presented. These are all based on magnetic phenomenon with a 

thin-film device holding perhaps the greatest possibility for actual mech­

anization . 

Concerning the learning matrix the following conclusions are estab­

lished. 

l) The learning matrix when trained with the continuous correction 

algorithm will converge to a desired value provided the inputs in the 

organizing set are independent. However the convergence is in the form 

of an infinite matrix series so that to reach the final value an infinite 

number of iterations would theoretically be required. 
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2) The learning matrix when trained with the error correction algo­

rithm will converge to a value which will perfectly classify the input 

patterns provided such a classification is in fact possible. An upper 

bound is derived for the number of adaptions which are required to attain 

this result. 

3) The continuous correction algorithm is in general inferior to 

the error correction algorithm. This is because it cannot be proved that 

the learning matrix when trained with the continuous correction algo­

rithm will ever perfectly classify a dependent organizing set, even if 

perfect classification is possible. 

4) The results of the computer simulation indicate that the learning 

matrix works well on patterns which are not extremely noisy or variable 

such as the machine-printed numbers. With sufficient training it also 

does well on noisy patterns such as the handwritten data. However a 

large organizing set must be employed before a satisfactory generalizing 

ability of the matrix, i.e., the ability to properly classify patterns not 

in the organizing set, can be obtained. 

5) Suitable magnetic devices have already been suggested in the 

literature which make the physical implementation of the learning matrix 

feasible. Further research and improvement on these devices must be com­

pleted before the implementation becomes entirely practical. 

The results of this dissertation provide information necessary for 

the design and construction of an actual pattern categorizer based upon 

the learning matrix model. Additional studies which could be made in­

clude : 
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1) Development of some practical measure of the rate of convergence 

of the iterative technique, 

2) Derivation of an algorithm which will produce nonlinear surfaces 

to separate pattern classes instead of the hyperplanes presented here, 

3) Study of possible advantages of using binary variables of minus 

one and plus one instead of the one and zero used in this research, 

4) Study of the feasibility of a learning matrix with ternary and 

higher order input variables, and 

5) Study of networks of learning matrices in which the outputs of 

one matrix become the inputs to another. 
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APPENDIX 

This appendix presents the proof of Theorem 8 stated on page 52 . 

Theorem 8. Given an input matrix X of m linearly independent n-dim-

ensional vectors, where m < n, the infinite matrix series 

B, where A and B are = B + AB + AAB + AAAB + t 
Z Â  
t=0 

are as defined in Equations 8 and g, converge to a matrix such 
00 

that XW_ = I. This is true even though the infinite series S A 
 ̂ t=0 

taken alone, diverges. 

Proof. The proof is carried out in detail for an input matrix X of 

2(m = 2) n-dimensional linearly independent vectors. The proof for more 

inputs follows in an exactly analogous manner but becomes extremely long 

due to the large number of matrices involved. For example the matrix AAB 

for three inputs would require the sum of 448 matrices. 

To simplify some of the equations involved, the following notation 

is used. 

X.'X. X.'Z.* 

I i| I 

The proof follows tediously but directly by substituting A and B for 

the two vector case into the expression for Ŵ . This gives, 

¥ ^ = B + A B + A A B + . . .  

[̂ 1 2̂ ~ *̂ 2̂ 1̂  '-̂ 1 ̂  ̂ 2 *̂ 1̂ " \̂ 1 " \̂ 2 
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- + AAB + AAAB 

This expression can be simplified by observing that 

Vi = 

X. 

X 
1 

X, X ̂ '  " l  

and that 

,0 = 

IxJ^lxP 

(x,-x„)x,'x, Ix 
2 2^ 2 2 = l_2 

X_'X 

Then 

Wf = [P̂  + . QgPJ + [-Q̂ Pg + Q̂ Q̂ Pi + 

- + AAB + &AAB + . . . 

A pattern for the terms of can now be discerned as 

B = 

ja = + OgÔ fg - Q2Q1Q2Z1 - Qlf2 

AAB - *̂ 2̂*̂ 1 ̂2̂ 1 '̂ 2 ̂1*̂ 2 *̂ 1̂ 2 " ̂ 2'̂ l'̂ 2̂ 1*̂ l̂ ~ '̂ l'̂ '̂ 1̂ 2' 

Rewritting these expressions in terms of the input vectors gives, 
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AB = 
(X̂ Xg'jZx̂ 'Ẑ * (X̂ Xp'jZXp'Zp* (XiX,')3Xp'ZT* 

1 1 12 2 2 12 2 1 

X, 
1 

X. X. X. X. 

(XjXg'jX̂ 'Zg* 

X 
1 

AAB = 
(XjXg'î X̂ 'Ẑ * 

X. 
1 

X. 
T 

(X̂ Xg'ĵ Xg'Zg* (X̂ X2')5x2'Ẑ * 

1 
X 
1 

X. 

(X̂ Xg')3x̂ 'Zg* 

Summing all terms of gives, 

= S 
k=0 

\2k 

1 
2(k+l} 

X. 
2k 

S 
k=0 

(%' 

X, 
2k 

X. 

s 2k 

k̂ Zg* 

' CO 

s 
(%') 2k-l -, 

k=l X, 2k I 
X. 

2k 
Xg'Ẑ * 

r CO 
s 
k=l 

2k-l _ 

X. 
1 

2k 
X. 

2k 
x̂ 'Zg*. (39) 

or 

Wp = (a)X̂ 'Ẑ * + (bjXg'Zg* _ (c)X2'Ẑ * _ (djX̂ Ẑg*, 
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where a, b, c, and d are the scalar infinite series given in brackets in 

Equation 39- Since a matrix series converges if and only if each element 

of the series converges (see Varga (19) ) it must now be shown that these 

scalar series do in fact converge. 

a — 2 
k=0 

(X̂ X_')2k 

_ I 2k+2| I 2k 
^1 r2 

2k 

X, ^ k=0 
2̂ J 

Since (a) is a power series it will converge if the general terms is less 

than 1. Thus the series will converge if 

X,X 
1 2 < 1. 

X. X. 

Or 

%l'X2 = %lX2' < %2 

From Schwartz's inequality 

%1%2  ̂ Xl X2 

But the equality holds only if X̂  = K Xg where K is some constant. Since 

the vectors are assumed to be independent the equality cannot exist. Thus 



www.manaraa.com

112 

the general term of (a) is less than one and the scalar series converges, 

The proof of convergence for (h), (c), and (d) is identical to that for 

(a). 

therefore converges. To prove X = I, substitute Equation 39 

into X Then 

X = X (a + b ^ 

= XLCaX̂ ' - cXg'jẑ * + (bXg' - aXT')Ẑ *] 
1 ' 2 

X̂ âX̂ ' - cXg') 

XgtaX̂ ' _ cXg') 

Xĵ bXg' _ dX̂ ') 

XgfbXg' _ dX̂ ') 

It must now be shown that 

X̂ âX̂  ̂- cXg') = 1 

X̂ CbXg' - dX̂ ') = 0 

XgfaX̂  ̂- cXg') = 0 

XgCbXg' _ dX̂ ') = 1 

( h o )  

(41) 

(42) 

(43) 

Substituting a and c into Equation 4o gives 

(X̂ Xg') 
o2k 

k=0 |x̂ |2kjx̂ |2 jXg 2k 
X. 1 

(X]X2')2kl 

. X Xg' k=l xA zkjxg 
2k 
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2k 2k 

= 1 + E 
k=l 

J 

00 

s 
k=l 

Lpl X. 

= 1. 

The proofs for Equations 4l, h2, and 4] follow in a similar manner to 

that for Equation 40, thus proving Theorem 5-

As a demonstration of Theorem 8, consider an example. (Several have 

been worked out). Let 

X = 

1 0 

1 1 1  

Then A =  ̂

3 -3 

-3 3 

0 0 

- 2  

-2  

4 

and B = 

1 

1 

-2  

2 

2 

2 

Then 

,18 -18 -8 108 -108 -32 

AA = (1)2 -18 18 -8 AAA = (^)3 -108 108 -32 

0 0 l6 0 0 64 

and 

1 
S A 
k=0 

CO _œ 

-00 CO -1 

0 0 3 

so the series diverges. 
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But 

k -k 16 -l6 

AS = ( ̂  )2 k -8 and AAB = ( l6 -l6 

-8 - 8 -32 32 

Then 

B + AB + AAB + AAAB + = 

i 0 

i 0 

1 1 

so that the series postmultiplied by B converges. Then 

i 0 

i 0 

-1 - 1 

X = 

1 1 0  

1 1 1  

1 0 

0 1 

- I, 

which completes the proof of Theorem 8. 
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